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Introduction and Background

Defining the genetic spatial boundaries of commercial marine species is a key issue for the
sustainable management of fisheries (Waples et al., 2008). Indeed, structured populations
may display variations in their life history traits such as fecundity, growth and mortality rates,
and their abundance. Therefore, stock assessment should be based on known population
boundaries. However, historically stock boundaries have been mainly based on economic,
social and political factors instead of biological ones, which can lead to mismatch between
biological and fisheries management units (Reiss et al., 2009 and references therein). In the
worst scenario it can result in loss of genetic diversity (Hauser et al., 2002) and the ability of
the species to adapt to environmental changes and to local population extinction.

The European hake, Merluccius merluccius, is widely distributed in the eastern Atlantic Ocean
(from Mauritania to Norway) and in the Mediterranean Sea and is one of the most important
demersal species in these areas from a commercial point of view (FAO, 2018 ; ICES, 2018). In
the Northeast Atlantic Ocean, hake is managed by the International Council for the Exploration
of the Sea (ICES) assuming two stocks: the northern stock and the southern stock separated
without biological evidence by the Capbreton Canyon. In the Southeast Atlantic Ocean, hake
is managed by the Fishery Committee for the Eastern Central Atlantic (CECAF) and Morocco
assuming one stock. Within the Mediterranean Sea, hake is managed by countries through the
27 geographical subareas (GSA) defined by the General Fisheries Commission for the
Mediterranean (GFCM) assuming one stock per GSA.

Several genetic studies highlighted the need for defining new assessment and management
units for the European hake within the Northeast Atlantic Ocean and evidenced that the actual
separation between the northern and the southern stock is not supported by genetic data (see
for example Lundy et al., 1999; Castillo et al., 2005; Pita et al., 2011, 2014; Milano et al., 2014;
Westgaard et al., 2017; Leone et al., 2019). However within the Mediterranean Sea, only few
studies aimed at disentangling the population genetic structure of hake with an exhaustive
sampling (Cimmaruta et al., 2005; Pita et al., 2010, 2014) but see (Milano et al., 2014) where
they found genetic differentiation between Western, Central and Eastern Mediterranean.

In this context, the FAO Copemed Il Transboran project aimed at investigating the spatial
population structure of sardine, European hake and blackspot seabream in the Alboran Sea
and adjacent waters following a multidisciplinary approach. The goal of this project is
therefore to identify the stock units and to determine if the current GSA boundaries are
appropriate spatial scale of assessment and management for these species.

The aim of the present work, is to determine the population genetic structure of the European
hake within the Alboran Sea and adjacent waters using microsatellite and SNP genetic
markers.



Materials and methods

Sampling design

Fifteen locations were sampled within the Alboran Sea, and neighbouring Mediterranean
waters and from adjacent Atlantic Ocean. A 0.5 cm? piece of white skeletal muscle was taken
from around 40 hakes per location and stored in non-denaturated ethanol 96% (see Table 1
and Figure 1).

Table 1. Location of Hake samples.

Area Sampling location Population ID GFCM GSA  Sample size
Atlantic Ocean Agadir (Morocco) AGA / 40
Atlantic Ocean Mehdia (Morocco) MHD / 40
Atlantic Ocean Huelva (Spain) HUE / 40
Atlantic Ocean Cadiz (Spain) CDz / 40
North Alboran Sea Estepona (Spain) ETP 1 40
North Alboran Sea Malaga (Spain) MLG 1 33
North Alboran Sea Roquetas (Spain) RQT 1 38
South Alboran Sea M'Diq (Morocco) MDQ 3 40*
South Alboran Sea Nador (Morocco) NDR 3 40
Mediterranean Sea Ghazaouet (Algeria) GHZ 4 41
Mediterranean Sea Annaba (Algeria) ANB 4 41
Mediterranean Sea Tabarka (Tunisia) TBK 12 40
Mediterranean Sea Gulf of Tunis (Tunisia) GTU 12 40
Mediterranean Sea Torrevieja (Spain) TOR 6 40
Mediterranean Sea Castellon (Spain) CAS 6 40

* For the SNP dataset only 37 individuals were considered
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Figure 1. Map of sampling location.

DNA extraction

Total genomic DNA was extracted from 593 individuals using the pureLink DNA Invitrogen Kit,
following the manufacturer’s protocol.

Microsatellite genotyping

Allindividuals were genotyped at six microsatellite loci: Mmer-hk20, Mmer-hk9b, Mmer-hk3b,
Mmer-hk29, Mmer-hk34b (Moran et al., 1999) and Mmer-UEAWO1 (Rico et al., 1997). PCR
was carried out in a total volume of 10 pl containing: 10 ng DNA, 0.2 uM of each primer, 0.2
mM of each deoxinucleotide, 1.0 mM MgCl, (for Mmer-hk29, Mmer-hk34b and Mmer-
UEAWO1) or 1.5 mM MgCl; (for Mmer-hk20, Mmer-hk9b and Mmer-hk3b), 1 X PCR buffer and
2 U Platinum Taq DNA Polymerase (Invitrogen). Amplification was performed in a 96-well
Applied Biosystems Proflex thermocycler as follows: 94°C for 2 min; 35 cycles of 94°C for 30's,
locus annealing temperature (50°C for Mmer-hk3b and 55°C for Mmer-hk20, Mmer-hk9b,
Mmer-hk29 and Mmer-UEAWO01) for 30 s, 72°C for 1 min. For the locus Mmer-hk34b the PCR
program was: 95°C for 5 min; 40 cycles of 95°C for 1 min, 51°C for 1 min, 72°C for 55 s and a
final elongation step at 72°C for 30 min. Amplified fragments were analyzed on an ABI 3500
Genetic Analyzer with GeneScan 600 LIZ internal size standard (Applied Biosystems).
GeneMapper v.3.5 software (Applied Biosystems) was used to score alleles.



Scoring errors due to stutter fragments, large allele dropout and the presence of null alleles
was checked with MICRO-CHECKER 2.2.3 (Van Oosterhout et al., 2004). Null allele frequencies
were estimated for each loci and sample following the algorithm of (Dempster et al., 1977)
with FREENA (Chapuis and Estoup, 2007) for microsatellite loci.

SNP genotyping

A custom Genotyping By Sequencing (GBS) assay was developed by Thermo Fisher Scientific,
from a set of 917 SNP of hake which were selected from Milano et al., 2014 and Leone et al.,
2019, using the following criteria and ranking: (1) outlier loci identified by the two studies, (2)
significant P value of computed single locus Fst values and common to Atlantic and
Mediterranean populations, (3) significant P value of computed single locus Fsr values for
Atlantic populations and (4) higher Fsr values. This set of markers was passed through a
Thermo Fisher Scientific’s quality control process. The quality check was performed using
European Hake, Merluccius merluccius, reference genome (GenBank assembly accession:
GCA _900312545.1). 591 SNP markers which passed the quality step were then submitted to
AgriSeq™ primer design phase. The primer designs were in-silico checked for specificity and
sensitivity of the intended target/marker regions using hake reference genome. Total of 574
SNPs were designed and were contained within 554 amplicons/target regions. Next, targeted
sequencing was performed using the developed custom GBS hake panel.

The DNA samples were prepared for sequencing using the AgriSeq™ HTS Library Kit (Applied
Biosystems). DNA samples were quantified using the Quant-iT DNA Assay kit (Thermo Fisher
Scientific) on the Fluoroskan™ Microplate Fluorometer. DNA concentrations were normalized
to 3.3 ng/uL for a total of 10 ng DNA per 10 pL reaction. Normalized DNA was combined with
the lon AgriSeq primer panel and AgriSeq amplification master mix. For amplification of
genomic targets, the following thermocycling programs were used: 99°C for 2 min, then 16
cycles of 99°C for 15s and 60°C for 4 min. Amplicons were then prepared for ligation with pre-
ligation enzyme digestion at 50°C for 10 min, 55°C for 10 min, and 60°C for 20 min. lonCode
™ Barcode Adapters 1-1248 kit were ligated to the digested products with barcoding enzyme
and buffer. Labelled amplicons were then pooled, cleaned up, amplified and normalized.
Following library preparation, libraries were loaded onto an lon 540 ™ sequencing Chip Kit via
the lon 540™ Kit-Chef and lon Chef. Sequencing was then performed on the lon S5 system
(Thermo Fisher, Inc. Waltham, MA). A total of 73M of reads per sequencing run were
generated. The reads were then de-multiplexed to individual samples using barcode
sequences.

For each sample, the sequenced reads from the targeted regions were then mapped to the
hake reference genome using TMAP- Torrent Mapping Alignment Program followed by
genotyping using TVC-Torrent Variant Caller. The genotypes were reported in different
formats TOP, TOP/BOT and actual alleles using AgriSum Toolkit.

Loci and individuals with a call rate below 80% were removed. Monomorphic loci and loci with
a minor allele frequency (MAF) lower than 1% were identified using adegenet R-package
(Jombart, 2008) and were removed from the final dataset.



Linkage disequilibrium, Hardy-Weinberg equilibrium and genetic diversity

Linkage disequilibrium was tested for each pairs of loci in each sample using the probability
test implemented in GENEPOP 4.0 (Rousset, 2008).

Tests for Hardy-Weinberg equilibrium within sample for each locus and over all loci were
conducted with GENEPOP 4.0 using the exact test. Single and multilocus (Weir and
Cockerham, 1984) f estimator of Fis were computed with the same software.

Allele frequencies, observed (Ho) and Nei’s (Nei, 1973) unbiased expected (He)
heterozygosities were estimated using GENETIX 4.0.5 (Belkhir et al., 2004). Allelic richness
[Ar(g)] and private allelic richness [Ap(g)] were computed with a rarefaction procedure using
HP-RARE (Kalinowski, 2005) with the minimum number of genes set to 66 genes for
microsatellite loci and 44 genes for SNP loci.

SNP Outlier detection

Outlier loci, potentially under selection, were identified using the independent approaches in
Bayescan 2.1 (Foll and Gaggiotti, 2008) and R package pcadapt (Luu et al., 2017) with the
whole dataset.

Bayescan relies on differences in allele frequencies between subpopulations to identify
candidate loci under selection. Subpopulation specific FST coefficients are divided into two
components by logistic regression. The population-specific component B is shared by all loci,
and the locus-specific component a is shared by all populations. When the locus-specific
component a is significantly different from zero means that the component is necessary to
explain the diversity pattern, and points out a departure from neutrality at the given locus.
Specifically, positive values of alpha indicate diversifying selection whereas negative values
suggest balancing/purifying selection. For each locus a posterior probability is computed and
SNPs with prior odds (PO) greater than a threshold are considered outliers since PO express
how likely is the model with selection compared to the neutral. For each dataset we ran
Bayescan with the following parameters: 50,000 burn-in period, 5,000 number of iterations,
20 pilot runs and thinning interval size set to 10. We set prior odd to 10 since the data set
comprised less than 1000 SNPs and we set the false discovery rate (FDR) to 5% (Benjamini and
Hochberg, 1995).

Furthermore, the method implemented in the R package pcadapt was run to detect local
adaptation. This method relies on PCA to detect population structure, and it allows the
identification of genetic markers putatively involved in biological adaptation considering their
relationship with the population structure. The statistical and computational approach
implemented in the package can be summarized in different steps. First, a PCA is used to
ascertain population structure and identify the number of principal components K to consider.
The number of PCs can be inferred by using the graphical approach based on the scree plot of
the eigenvalues and applying the Cattell’s rule. The components corresponding to eigenvalues
to the left of the straight line should be kept. Then, each SNP is regressed by the K principal
components. The results are reported as a vector of z-scores between each SNP, and the first
K components obtained with the linear regression. Based on this vector, the outliers are then



identified using a multi-dimensional approach. The Mahalanobis distance is used as a statistic
to measure the distance between each point and its mean. It calculates the distance between
the covariance matrix of the z-scores and the vector of the z-score means. Finally,
Mahalanobis distances are transformed in p-values based on the correlations between SNPs
and the K principal components to performed multiple hypothesis testing. The g-value
procedure is recommended to choose a threshold for p-values FDR approach (Benjamini and
Hochberg, 1995).

The function pcadapt() with a large number of PCs (K= 20) was applied to the dataset to
identify the optimal number of principal components K by using scree plot (Cattell’s rule) or
scoreplot (population structure). As a result, the pcadapt() function was run with the optimal
K (K=4) by using Mahalanobis method and a threshold for MAF of 0.05 choosing as cut-off a =
0.1.

Population genetic structure analyses

The population genetic structure analyses were performed on microsatellite dataset and on
the whole, neutral and outlier datasets for SNP.

(Weir and Cockerham, 1984) & estimator of Fst was computed between all pairs of samples
with GENEPOP 4.0. For microsatellite dataset, pairwise Fst estimates were also computed
following the excluding null allele method in FREENA (Chapuis and Estoup, 2007), as null alleles
can induce overestimation of genetic distance.

The measure of genetic differentiation Desr (Jost, 2008) was computed with GENALEX 6.5
(Peakall and Smouse, 2012) using 999 permutations for microsatellite dataset.

The significance of pairwise genotypic differentiation between samples was tested using the
exact test implemented in GENEPOP 4.0.

To evaluate the number of clusters (K) from individual’s genotypes without prior information
on their geographical locations, the Bayesian method implemented in STRUCTURE 2.3.4
(Pritchard et al., 2000; Falush et al., 2003, 2007) was used under the admixture model with
correlated allele frequencies among clusters. Ten independent runs were performed for each
K using 500 000 iterations and a burn-in period of 50 000. The evaluation of the best K was
performed according to Pritchard’s criterion (Pritchard et al.,, 2000) using STUCTURE
HARVESTER online (Earl and vonHoldt, 2012). We used CLUMPP 1.1 (Jakobsson and
Rosenberg, 2007) to merge the results across the 10 runs and DISTRUCT 1.1 (Rosenberg, 2004)
to visualize the results.

TESS3 algorithm, combining genetic and geographic data to compute spatial ancestry
coefficients, was also used to estimate and visualize population structure (Caye et al., 2016,
2018). The method uses individual spatial coordinates to better discriminate among putative
populations using a graph based non-negative matrix factorization (Caye et al., 2016). The data
were converted to tess3 matrix format using tess2tess3() function implemented in tess3r R
package (Caye et al., 2018). The algorithm was run by using tess3() function to estimate spatial
population structure for K values from 1 to 10 with 20 repetitions for each K. To identify the K
that better described the data cross validation score was inspected, and ancestry coefficients



were analyzed only for values of K from 2 to 4. The corresponding Qmatrix of each K was
visualized by using plotQ function implemented in pophelper R package. Values of the Qmatrix
were interpolated on the geographic map of the study area using ggtess3Q() R function,
showing the distribution of gene pools over the seascape.

A locus-by-locus analysis of molecular variance (AMOVA, n= 1000 permutations) was carried
out in ARLEQUIN 3.5. (Excoffier et al., 2005) using the groups defined by STRUCTURE (see
results).

Principal coordinate analysis (PCoA) was performed with GENALEX 6.5 (Peakall and Smouse,
2012) to investigate relative genetic distances among samples. PCoA is a multivariate
technique that allows one to find and plot the major patterns within a multivariate data set
(e.g. multiple loci and multiple samples). Here it was computed based on the matrix of
pairwise codominant genotypic genetic distance among all pairs of geographical population
samples, with the default options of Triangular Distance Matrix and Covariance-Standardized.

The pattern of isolation by distance (IBD) was tested through the correlation between pairwise
Fst/(1- Fst) values and the logarithm of the geographical distances between samples by a
Mantel test (n= 10 000 permutations) with GENETIX 4.05.

The level of significance was adjusted using a FDR, whenever multiple tests were conducted
(Benjamini and Hochberg, 1995).

Gene-environment association analysis

Based on the geographical position of the 15 sampling sites, 7 macro-areas have been
identified following the depth range of the species in the Mediterranean Sea and Atlantic
Ocean (0-500 m) (Casey and Pereiro, 1995; Recasens et al., 1998) and the FAO GSA. For each
macro-area, the centroid and its geographical coordinates (latitude and longitude) were
identified and were used for individual coordinates. Three environmental variables (salinity,
temperature and chlorophyll a) were selected, based on their influence on the distribution of
European hake and their variation between sampling locations. Monthly mean values of
physical and biochemical environmental variables were downloaded from E.U. Copernicus
Marine Service Information (https://marine.copernicus.eu/). Salinity (sal, psu) and
temperature (temp, °C) data were extracted from the Global Ocean Physics Reanalysis
(product identifier GLOBAL_REANALYSIS_PHY_001_030) from 2014 to 2018 on a grid with
1/12° x 1/12° horizontal resolution (approximatively 8 km) and 50 vertical levels of thickness
increasing with deph (0-5500 m). Chlorophyll a concentrations (chl, milligram m3) were
extracted from the Global Ocean Biogeochemistry Hindcast (product identifier
GLOBAL_REANALYSIS_BIO_001_029) from 2014 to 2018 on a grid with 1/4° x 1/4° horizontal
resolution and 75 vertical levels of thickness increasing with depth (0-5500 m). Average values
were extracted over the temporal windows of 5 years (2014-2018) based on macro-areas
extension keeping only surface values.

In order to detect multicollinearity, we applied the function vifstep in the usdm R package
(Naimi et al., 2014; Naimi, 2017) which calculates the Variance Inflation Factor (VIF) for the
set of variables using a stepwise procedure. Highly correlated variables with a VIF greater than



10 indicating collinearity problem (Dormann et al., 2013) are excluded. Then, only salinity and
chlorophyll a were kept. Spatial distance matrix between locations were calculated from
geographical coordinates using gcd.hf function to account for earth curvature. Spatial
variables were obtained by computing the distance-based Moran Eigenvector’s Maps
(dbMEMSs) using pcnm function. Four doMEMSs were identified and one was removed after
multicollinearity analysis.

To assess how much of the genetic variation could be explained by the variation in the set of
environmental and spatial variables, Redundacy Analysis (RDA) was performed. Principal
components of PCA on genetic distance matrices were used as response variables, and
environmental and spatial variables as explanatory variables. We performed distinct RDAs
using the whole, neutral and outlier datasets as response variable. To perform the PCA missing
data were replaced with mean allele frequency. The matrix of allele frequencies was then
transformed with the Hellinger approach using the decostand function, and PCA on this
standardized matrix was performed by using the prcomp function. Following Selmoni et al.,
(2020) we extracted and used first principal components that reach the 80% of cumulative
variance as response variable to compute RDA by using rda function in vegan R package,
setting the option scale = TRUE. For the explanatory variables we combined the spatial
dbMEMSs factors and the environmental factors. We applied an ANOVA with 1000
permutations to assess the significance of the global model, and calculated the adjusted
coefficient of determination (R%adj) using the RSquareAd;j function in vegan R package to
determine the variation explained by the model. Then, we applied the ordistep function with
1000 permutations to perform both forward and backward selection of explanatory variables
that best explained the variability of the response variable (optimal model). Also in this case,
we evaluated the significance of the model and each variable by applying marginal ANOVAs
with 1000 permutations, and we calculated he adjusted coefficient of determination, as
previously explained. Distance among individuals and the relationship with the environmental
variables were visualised by using biplots with option display = (“Ic”, “wa”) and default scaling
= 2 (Bernatchez et al., 2019; Selmoni et al., 2020).

To visualize the gradient of selected environmental variables, we applied the ordisurf function
of vegan R package which fits a smooth surface for each variable providing the diagrams wih
isolines. We then used the envfit function in vegan R package to identify vectors pointing in
direction of the largest increase in variable value (Oksanen, 2015). Finally, we used the varpart
function to partition the variation in genomic data with respect to environmental and spatial
variables. We assessed the proportion of variability explained by each set of variables through
the adjusted coefficient of determination (R?adj) and Venn’s diagrams.

Results

Microsatellite genotypic data, Linkage disequilibrium, Hardy-Weinberqg equilibrium and
genetic diversity

All the microsatellite loci were polymorphic with a number of alleles ranging from 16 for
Mmer-hk3b to 62 for Mmer-hk9b with a mean value of 38 alleles per locus. No failure of PCR



amplification was observed, except one individual of ETP at locus Mmer-hk29 that was coded
as missing data.

Over all sample, significant linkage disequilibrium among loci Mmer-hk20 and Mmer-hk9b was
found (P < 0.05 after FDR correction) but was not generalized in all samples. Therefore, we did
not consider these 2 loci physically linked. Besides, the linkage disequilibrium was also
assessed with 1000 permutations using GENETIX 4.0.5 and no global linkage disequilibrium
was found (P > 0.05 after FDR correction).

No evidence of large allele dropout or scoring errors due to stutters was found. However,
evidence of null allele was observed at locus Mmer-hk9b in MHD, at locus Mmer-hk29 in all
samples and locus Mmer-hk34b in all samples except CDZ, MDQ, NDR and ANB (Table S1,
Supporting Information). The estimates of null allele frequencies varied between 0.01 (for
Mmer-hk9b in GHZ) to 0.353 (for Mmer-hk29 in MLG) (Table S1, Supporting Information).

Multilocus Fis values ranged between 0.13 for CDZ and ANB and 0.2 for GHZ (Table 2). For each
locus Fis values ranged from -0.13 (for Mmer-hk3b in NDR) to 0.74 (for Mmer-hk29 in MLG)
(Table S1, Supporting Information). Over all loci, significant heterozygote deficits were found
in all samples (after FDR correction). However, heterozygote deficit was not generalized for
all loci in all samples (except for Mmer-hk29 and Mmer-hk34b) and in 77% of the cases those
heterozygote deficits matched the evidence of null allele using MICRO-CHECKER and high null
allele frequencies for Mmer-hk29 and Mmer-hk34b (Table S1, Supporting Information).

Observed and unbiased expected heterozygosities varied between 0.72 for GHZ and 0.82 for
CDZ and between 0.88 for ANB, TBK, TOR, CAS and 0.93 for MHD, CDZ, MDQ, respectively
(with a mean value of 0.76 and 0.90 respectively) (Table 2). The allelic richness Ar(66) ranged
from 20.1 for HUE to 22.33 for MLG and the private allelic richness Ap(66) from 0.06 for ETP
and MDQ to 0.76 for AGA (Table 2).



Table 2. Estimators of genetic diversity at microsatellite loci.

Sample Ho He Ar(66) Ap(66) f

AGA 0.75 0.92 21.10 0.76 0.19
MHD 0.75 0.93 22.05 0.65 0.19
HUE 0.79 0.92 20.10 0.34 0.15
CDz 0.82 0.93 21.66 0.34 0.13
ETP 0.76 0.9 20.45 0.06 0.16
MLG 0.78 0.92 22.33 0.38 0.16
RQT 0.75 0.90 22.18 0.33 0.18
MDQ 0.78 0.93 21.69 0.06 0.17
NDR 0.77 0.90 20.85 0.28 0.15
GHZ 0.72 0.89 21.25 0.17 0.20
ANB 0.77 0.88 21.18 0.19 0.13
TBK 0.76 0.88 21.81 0.46 0.15
GTU 0.73 0.89 20.17 0.44 0.19
TOR 0.74 0.88 21.40 0.31 0.17
CAS 0.73 0.88 20.85 0.45 0.17

Ho, observed heterozygosity; He, unbiased expected heterozygosity; Ar(66) rarefied allelic richness
and Ap(66) rarefied private allelic richness (with rarefaction size of 66) ; f, Weir & Cockerham’s (1984)
f estimator of Fis with significant values in bold (0.05 threshold after FDR correction).

SNP genotypic data, Linkage disequilibrium, Hardy-Weinberg equilibrium and genetic diversity

After excluding loci with a call rate lower than 80% (71 loci), monomorphic loci (36 loci) and
loci with a MAF lower than 1% (14 loci), the linkage disequilibrium and Hardy Weinberg tests
were performed on 453 loci. Three individuals with a call rate lower than 80% were removed
from MDQ.

Over all sample, significant linkage disequilibrium among 15 pairs of loci were found (P < 0.05
after FDR correction). Over all loci, all samples presented significant heterozygote deficits
(after FDR correction). Therefore, all loci involved in linkage disequilibrium and presenting
departure from Hardy-Weinberg expectations in at least one sample were removed from
subsequent analyses (192 loci, keeping 261 loci).

Multilocus Fis values ranged between -0.02 for MDQ and 0.04 for NDR and GHZ (Table 3). Over
all loci, significant heterozygote deficits were found in 3 samples (NDR, GHZ and TOR) out of
15 (after FDR correction) (Table 3).

Observed and unbiased expected heterozygosities varied between 0.30 for ANB, GTU, TOR
and CAS and 0.33 for AGA, ETP, MLG, MDQ and GHZ and between 0.30 for GTU and 0.34 for
ETP and GHZ, respectively (with a mean value of 0.32 and 0.32 respectively) (Table 3). The
allelic richness Ar(44) ranged from 1.99 for AGA, MHD, HUE, CDZ, RQT, NDR, ANB, TBK, GTU,
TOR and CAS to 2 for GHZ, ETP, MLG and MDQ_(Table 3).



Table 3. Estimators of genetic diversity at (261) SNP loci.

Sample Ho He Ar(44) f

AGA 0.33 0.33 1.99 0.01
MHD 0.32 0.32 1.99 0.01
HUE 0.32 0.33 1.99 0.02
CDz 0.32 0.32 1.99 0.02
ETP 0.33 0.34 2 0.02
MLG 0.33 0.33 2 0.02
RQT 0.32 0.32 1.99 -0.01
MDQ 0.33 0.33 2 -0.02
NDR 0.32 0.33 1.99 0.04
GHZ 0.33 0.34 2 0.04
ANB 0.3 0.31 1.99 0.01
TBK 0.32 0.32 1.99 -0.01
GTU 0.3 0.3 1.99 0.02
TOR 0.3 0.31 1.99 0.03
CAS 0.3 0.31 1.99 0.02

Ho, observed heterozygosity ; He, unbiased expected heterozygosity ; Ar(44) rarefied allelic richness
(with rarefaction size of 44) ; f, Weir & Cockerham’s (1984) f estimator of Fis with significant values in
bold (0.05 treshold after FDR correction).

SNP outlier detection

Bayescan method identified 59 SNPs putatively under selection, while pcadapt identified 55
SNPs. In order to minimize the detection of false positives, only 31 loci that were identified in
common with both methods were considered as outlier loci. All loci not detected as outlier by
any of the 2 software pcadapt and Bayescan, considering both balancing and diversifying
outliers, were considered as neutral (178 loci).

Population genetic structure

Overall Fstvalues were 0.0053, 0.0377, 0.0047 and 0.1360 using microsatellite, whole, neutral
and outlier datasets respectively and the exact test indicated a significant differentiation (P <
0.001). Pairwise Fst values (Table 4) ranged from -0.0037 (TOR vs. CAS) to 0.0184 (HUE vs.
ANB), from -0.0036 (MLG vs. GHZ) to 0.1196 (CDZ vs. GTU), from -0.0034 (MLG vs. GHZ) to
0.0188 (CDZ vs. GTU) and from -0.0061 (MLG vs. GHZ) to 0.3729 (CDZ vs. GTU) using
microsatellite, whole, neutral and outlier datasets respectively.

No significant differences were observed between pairwise Fst and pairwise corrected for null
alleles (t-test, P = 0.783) for microsatellite dataset.

Pairwise Dest values (Table 4) ranged from -0.0396 (HUE vs. AGA) to 0.1613 (CAS vs. CDZ) for
microsatellite dataset.

Pairwise comparisons of genetic differentiation, displayed a high degree of structure with 80
and 91 significant tests out of 105 for the whole and outlier datasets respectively (Table 4).



However, for the neutral and microsatellite datasets the level of structure was moderate with
respectively 21 and 30 significant tests out of 105 (Table 4).

For all datasets, the Atlantic formed 1 genetic unit, except for the outlier dataset that unveiled
genetic differentiation between AGA and HUE; AGA and CDZ and MHD and CDZ.

For neutral and microsatellite datasets, North Alboran (GSA 1) formed 1 genetic unit, whereas
for the whole and outlier datasets RQT was genetically differentiated from ETP and MLG.

For all datasets, South Alboran (GSA 3) formed 1 genetic unit, except for the outlier dataset
that revealed genetic differentiation between MDQ and NDR.

For neutral and microsatellite datasets, Algeria (GSA 4) formed 1 genetic unit, whereas for the
whole and outlier datasets GHZ was genetically differentiated from ANB.

For all datasets, North Tunisia (GSA 12) formed 1 genetic unit such as North Spain (GSA 6).

Atlantic was genetically differentiated from the Mediterranean for all datasets. However, only
for the whole and outlier datasets, all Atlantic samples were genetically differentiated from
all the Mediterranean samples.

The genetic structure between each GSA, based on pairwise comparisons of genetic
differentiation, depended on the considered dataset (see Table 4 for details).



Table 4. Pairwise Fsr (lower left) and Dest (upper right) values for: a) microsatellite, b) whole, c) neutral, and d) outlier datasets respectively.
Significant values are in bold (0.05 threshold after FDR correction).

ATLANTIC NORTH ALBORAN SOUTH ALBORAN ALGERIA NORTH TUNISIA NORTH SPAIN
a) MICROSATELLITE LOCI
AGA MHD HUE CDZ ETP MLG RQT MDQ NDR GHZ ANB TBK GTU TOR CAS
AGA - 0.0149 -0.0396 -0.0198 0.0126 0.0183 0.0334 -0.0369 0.0578 0.0147 0.091 0.0741 0.1221 0.0864 0.0555
ATLANTIC MHD 0.0013 - 0.0038 -0.0062 0.0849 -0.0201 0.0487 -0.0086 0.107 0.0813 0.1586 0.103 0.1079 0.1113 0.1072
HUE -0.0036 0.0003 - -0.0175 0.0376 0.048 0.0629 -0.02 0.0684 0.0621 0.1587 0.0819 0.1214 0.1457 0.105
CDZ -0.0017 -0.0005 -0.0015 - 0.0268 0.0523 0.0819 -0.0352 0.0544 0.0699 0.1595 0.1275 0.1255 0.1507 0.1613
o ETP 0.0011 0.0081 0.0040 0.0024 - 0.027 0.0136 0.0262 0.0317 -0.0104 0.0535 0.0339 0.0747 0.0504 0.0505
A':B('.':II:N MLG 0.0017 -0.0018 0.0044 0.0045 0.0029 - -0.0055 -0.0163 0.0763 0.0381 0.0791 0.0258 0.0616 0.0692 0.0518
RQT 0.0034 0.0046 0.0063 0.0078 0.0014 -0.0006 - 0.0497 0.0451 0.02 -0.0006 -0.0221 0.0098 -0.0011 -0.0042
SOUTH MDQ -0.0032 -0.0007 -0.0017 -0.0028 0.0027 -0.0014 0.0048 - 0.0483 0.0205 0.1029 0.0716 0.0947 0.0864 0.0672
ALBORAN NDR 0.0059 0.0103 0.0069 0.0052 0.0035 0.0079 0.0051 0.0047 - 0.044 0.0512 0.045 0.0265 0.028 0.0343
G GHZ 0.0016 0.0083 0.0066 0.0071 -0.0014 0.0041 0.0024 0.0021 0.0052 - 0.0389 0.0353 0.07 0.0419 0.03
ALGERIA ANB 0.0108 0.0176 0.0184 0.0176 0.0070 0.0095 -0.0000 0.0115 0.0066 0.0053 - 0.0244 0.0192 0.002 -0.0072
NORTH  TBK 0.0083 0.0109 0.0091 0.0134 0.0042 0.0030 -0.0027 0.0076 0.0056 0.0046 0.0034 - 0.0221 0.0058 -0.0075
TUNISIA  GTU 0.0131 0.0109 0.0129 0.0126 0.0089 0.0067 0.0012 0.0096 0.0032 0.0087 0.0026 0.0029 - 0.0096 -0.0052
NORTH  TOR 0.0100 0.0121 0.0166 0.0163 0.0064 0.0081 -0.0001 0.0095 0.0036 0.0056 0.0003 0.0008 0.0013 - -0.0264
SPAIN CAS 0.0064 0.0115 0.0118 0.0171 0.0064 0.0060 -0.0005 0.0073 0.0043 0.0039 -0.0010 -0.0010 -0.0007 -0.0037 -
b) WHOLE SNP LOCI ATLANTIC NORTH ALBORAN SOUTH ALBORAN ALGERIA NORTH TUNISIA NORTH SPAIN
AGA MHD HUE CDzZ ETP MLG RQT MDQ NDR GHzZ ANB TBK GTU TOR CAS
AGA -
MHD 0.0018 -
ATLANTIC HUE 0.0036 0.0033 -
CDZ 0.0078 0.0045 0.0007 -
ETP 0.0150 0.0153 0.0147 0.0185 -
AT:;;:N MLG 0.0166 0.0163 0.0167 0.0198 -0.0019 -
RQT 0.0497 0.0545 0.0602 0.0660 0.0193 0.0143 -
SOUTH MDQ 0.0112 0.0110 0.0173 0.0172 0.0051 0.0045 0.0244 -
ALBORAN NDR 0.0169 0.0188 0.0224 0.0260 0.0017 0.0002 0.0106 0.0036 -
GHZ 0.0179 0.0170 0.0180 0.0227 -0.0005 -0.0036 0.0146 0.0051 -0.0017 -
ALGERIA ANB 0.0801 0.0855 0.0950 0.1038 0.0457 0.0410 0.0112 0.0499 0.0314 0.0387 -
NORTH  TBK 0.0778 0.0840 0.0911 0.0969 0.0419 0.0391 0.0116 0.0451 0.0283 0.0354 0.0004 -
TUNISIA  GTU 0.0965 0.1034 0.1118 0.1196 0.0583 0.0534 0.0208 0.0613 0.0422 0.0494 0.0053 0.0026 -
NORTH  TOR 0.0903 0.0933 0.0943 0.1030 0.0387 0.0338 0.0103 0.0567 0.0330 0.0340 0.0207 0.0214 0.0291 -
SPAIN CAS 0.0856 0.0874 0.0919 0.0992 0.0356 0.0332 0.0064 0.0505 0.0294 0.0309 0.0114 0.0124 0.0198 0.0002 -




ATLANTIC NORTH ALBORAN SOUTH ALBORAN ALGERIA NORTH TUNISIA NORTH SPAIN
¢) NEUTRAL SNP LOCI
AGA MHD HUE cbz ETP MLG RQT MDQ NDR GHz ANB TBK GTU TOR CAS
AGA -
aTLanTic HD 0.0016 )
HUE -0.0033 0.0010 -
cpz 0.0003 -0.0003 0.0002 -
nortH  ETP 0.0015 0.0012 0.0011 0.0020 -
atboran MG 0.0043 0.0021 0.0031 0.0034 -0.0005 -
RQT 0.0099 0.0089 0.0095 0.0092 0.0015 0.0014 -
SOUTH MDQ 0.0065 0.0024 0.0062 0.0039 0.0009 0.0003 0.0075 -
ALBORAN NDR 0.0022 0.0009 0.0011 0.0010 -0.0020 -0.0007 0.0031 0.0027 -
aLGeria  OHZ 0.0026 0.0014 0.0024 0.0049 -0.0015 -0.0034 0.0030 0.0010 -0.0017 -
ANB 0.0104 0.0077 0.0080 0.0122 0.0003 0.0020 0.0004 0.0098 0.0031 0.0033 -
NORTH  TBK 0.0122 0.0088 0.0091 0.0096 -0.0006 0.0008 0.0002 0.0085 0.0025 0.0036 -0.0013 -
TUNISIA  GTU 0.0185 0.0180 0.0164 0.0188 0.0056 0.0063 0.0023 0.0127 0.0075 0.0067 0.0026 -0.0011 -
NORTH TOR 0.0152 0.0119 0.0126 0.0139 0.0027 0.0035 -0.0003 0.0103 0.0048 0.0062 -0.0026 -0.0018 -0.0019 -
SPAIN  CAS 0.0158 0.0115 0.0135 0.0143 0.0017 0.0057 0.0012 0.0110 0.0061 0.0060 -0.0024 -0.0008 -0.0007 -0.0019 -
ATLANTIC NORTH ALBORAN SOUTH ALBORAN ALGERIA NORTH TUNISIA NORTH SPAIN
d) OUTLIER SNP LOCI
AGA MHD HUE cDz ETP MLG RQT MDQ NDR GHZ ANB TBK GTU TOR CAS
AGA -
ATLaNTIC HD 0.0070 )
HUE 0.0207 0.0122 -
cpz 0.0359 0.0166 -0.0007 -
o ETP 0.0525 0.0602 0.0626 0.0646 -
A':B;II:N MLG 0.0525 0.0640 0.0731 0.0750 -0.0047 -
RQT 0.1592 0.1917 0.2152 0.2251 0.0707 0.0559 -
SOUTH MDQ 0.0237 0.0336 0.0473 0.0493 0.0208 0.0147 0.0845 -
ALBORAN NDR 0.0590 0.0806 0.0924 0.0965 0.0073 0.0008 0.0372 0.0128 -
GHzZ 0.0548 0.0667 0.0747 0.0753 -0.0008 -0.0061 0.0503 0.0100 -0.0047 -
ALGERIA N8 0.2533 0.2957 0.3279 0.3359 0.1755 0.1592 0.0566 0.1746 0.1176 0.1444 -
NORTH  TBK 0.2415 0.2852 0.3130 0.3210 0.1663 0.1561 0.0587 0.1651 0.1119 0.1351 0.0055 -
TUNISIA  GTU 0.2887 0.3342 0.3634 0.3729 0.2091 0.1955 0.0809 0.2088 0.1526 0.1773 0.0003 0.0017 -
NORTH  TOR 0.2701 0.2992 0.3142 0.3212 0.1282 0.1131 0.0441 0.1861 0.1091 0.1127 0.1067 0.1155 0.1296 -
SPAIN  CAS 0.2494 0.2798 0.2994 0.3064 0.1221 0.1053 0.0229 0.1657 0.0908 0.0996 0.0720 0.0739 0.0912 0.0028 -




According to Pritchard’s criterion, the best K value for the whole and neutral datasets was K =
2 (Figure S1, Supporting Information) and K = 3 for the outlier dataset (Figure S1, Supporting
Information), whereas STRUCTURE failed to detect any structure with the microsatellite
dataset (Figure S1, Supporting Information). For all the SNP datasets the first cluster grouped
the Atlantic, North Alboran (except RQT), South Alboran samples and GHZ, while the second
cluster gouped RQT, ANB, North Tunisia and North Spain samples for the whole and neutral
datasets (Figure 2). The outlier dataset separated the second previous cluster into 2 different
clusters: one grouping RQT and North Spain samples and another gouping ANB and North
Tunisia samples.

Following the cross-validation criterion for TESS3, the best K values corresponds either to a
plateau or an increase in the curve. For whole dataset, the cross-validation curve started to
increase from K = 3 (Figure S2, Supporting Information) indicating three main ancestral groups
(Figure 3 and Figure S3, Supporting Information), corresponding to the following geographical
clines: (1) Atlantic, North Alboran (except RQT) and South Alboran samples and GHZ; (2) ANB
and North Tunisia samples; (3) RQT and North Spain samples. For neutral dataset, the cross-
validation curve started to increase from K = 2 (Figure S2, Supporting Information) indicating
two main ancestral groups (Figure 3 and Figure S3, Supporting Information): (1) Atlantic, South
Alboran samples and GHZ; (2) ANB, North Alboran, North Tunisia and North Spain samples.
For outlier dataset, the cross-validation curve decreased rapidly from K=1to K =2, confirming
the main division into two ancestral groups. From K = 3 the values of cross-validation started
to decrease slowly indicating a subtle substructure (Figure S2, Supporting Information). Four
ancestral groups were detected (Figure 3 and Figure S3, Supporting Information),
corresponding to the following geographical area: (1) Atlantic samples (except AGA); (2) AGA
and North and South Alboran samples; (3) ANB and North Tunisia samples; (4) North Spain
samples. For microsatellite dataset, the cross-validation curve started to increase from K =2
(Figure S2, Supporting Information) indicating two main ancestral groups (Figure 3 and Figure
S3, Supporting Information): (1) Atlantic, North Alboran (except RQT) samples and MDQ; (2)
NDR, RQT, Algeria, North Tunisia and North Spain samples.

The AMOVA confirmed the significant genetic structure among the STRUCTURE groups,
among samples within group and within samples for all datasets (P < 0.001, except among
samples within group for the neutral dataset P = 0.09; Table 5). The percentage of genetic
variation explained by differences among groups was 5, 0.8 and 16.5 % for the whole, neutral
and outlier datasets respectively (Table 5). However, the largest variation was due to within
populations differences with 93.9, 99.1 and 80.8% for whole, neutral and outlier datasets
respectively (Table 5).

The PCoA also confirmed STRUCTURE results (Figure 4) as 83.4, 72.3 and 83% of variance from
the first principal coordinate distinguished Atlantic, North Alboran (except RQT), South
Alboran samples and GHZ from RQT, ANB, North Tunisia and North Spain samples for whole,
neutral and outlier datasets respectively. The second principal coordinate, accounting for 9.9,
and 12.8% of the variance allowed to differentiate RQT and North Spain samples from ANB
and North Tunisia samples for the whole and outlier datasets respectively. For the
microsatellite dataset, the first principal coordinate (63.4 %) distinguished 3 groups: 1) Atlantic



samples, MDQ and GHZ, 2) NDR, GHZ and ETP and 3) RQT, ANB, North Tunisia and North Spain
samples (Figure 4).
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Figure 2. Graphical representation of the Bayesian clustering analysis with STRUCTURE for: a)
whole, b) neutral and c) outlier datasets of SNP.
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Figure 3. Interpolation of the values of the ancestry coefficient on the geographical map of
the study area for: a) whole, b) neutral, c) outlier datasets of SNP and d) microsatellite dataset.



Table 5. Analysis of molecular variance (AMOVA) following STRUCTURE groups for: a) whole,
b) neutral and c) outlier datasets of SNP.

Source of Variation Percentage of variance (%)  P-value
a) STRUCTURE clusters K =2
Among groups 5 <0.001
Among samples within group 1.1 <0.001
Within samples 93.9 <0.001
b) STRUCTURE clusters K =2
Among groups 0.8 <0.001
Among samples within group 0.1 0.09
Within samples 99.1 <0.001
c) STRUCTURE clusters K=3
Among groups 16.5 <0.001
Among samples within group 2.7 <0.001
Within samples 80.8 <0.001
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W MG

WGty

WRrar
W TBK
CAS

TOR MDﬁ HUE

Coord. 2 (14,35%)

M coz

ANB W AGA

[l NDR

GHZ

‘ WETP

Coord. 1 (63,36%)

Il Atlantic

I North Alboran GSA 1

[l South Alboran GSA 2
Algeria GSA 4

[ North Tunisia GSA 12
North Spain GSA 6

Figure 4. Principal coordinate analysis (PCoA) for: a) whole, b) neutral, c) outlier and d)
microsatellite datasets.

No pattern of IBD was found with neither of the datasets (R =-0.312, P =0.978; R =-0.278, P
=0.985; R=-0.383,P =0.997; R=-0.240, P =0.979 for whole, neutral, outlier and microsatellite
datasets respectively).

Gene-environment association analysis

The global RDA model was significant (p < 0.05) and explained 0.73% of genetic variation for
the whole dataset. The first two axes of the RDA accounted for 0.46% of the genetic variation.
Spatial factors (dbMEM?2 and dbMEM3), salinity and chlorophyll a were identified for the RDA
using whole dataset and following the ordistep procedure (Figure S4, Supporting Information).
The marginal ANOVAs, considering each independent explanatory variable selected by
ordistep function, showed that spatial factors (dbMEM2 and dbMEM3), salinity and
chlorophyll a were all significant predictors of the genetic variation (p < 0.01). The results of
variation partitioning indicated that environmental variables (5.2%) had a higher fraction of
explained variance than spatial variables (0.7%). Shared variance resulted in 0.8% of explained
variance.

The global RDA model was significant (p < 0.05) and explained 0.40% of genetic variation for
the neutral dataset. The first two axes of the RDA accounted for 0.24% of the genetic variation.



Only environmental factors (sal and chl) were identified for the RDA using neutral dataset and
following the ordistep procedure (Figure S4, Supporting Information). The marginal ANOVAs,
considering each independent explanatory variable selected by ordistep function, showed
that salinity and chlorophyll a were all significant predictors of the genetic variation (p < 0.01).
The results of variation partitioning indicated that chlorophyll a (0.3%) had approximately the
same individual fraction of explained variance than salinity (0.1%). Shared variance (0.6%)
resulted in the highest amount of explained variance.

The global RDA model was significant (p < 0.05) and explained 5.40% of genetic variation for
the whole dataset. The first two axes of the RDA accounted for 4.59% of the genetic variation.
Spatial factors (dbMEM2 and dbMEM3), salinity and chlorophyll a were identified for the RDA
using outlier dataset and following the ordistep procedure (Figure S4, Supporting
Information). The marginal ANOVAs, considering each independent explanatory variable
selected by ordistep function, showed that spatial factors (dbMEM2 and dbMEM3), salinity
and chlorophyll a were all significant predictors of the genetic variation (p < 0.01). The results
of variation partitioning indicated that environmental variables (17.1%) had a higher fraction
of explained variance than spatial variables (3%). Shared variance (3%) resulted in the same
amount of explained variance as spatial variables.

Discussion and conclusion
Genetic markers

The present study of population genetic structure of European hake used two kind of genetic
markers, microsatellite and SNP loci. The level of genetic variability, based on observed and
expected heterozygosities, found in this study was in the same order of magnitude as previous
studies for microsatellite (Lundy et al., 1999; Castillo et al., 2005; Pita et al., 2011, 2016) and
SNP (Milano et al., 2014; Westgaard et al., 2017; Leone et al., 2019) markers. However, the 6
microsatellite loci used in this study were less powerful than the 261 SNP loci to unveil
population structure for hake at a small spatial scale. This could be due to the low number of
amplified microsatellite markers and 2 loci out of the 6 were out of Hardy Weinberg
equilibrium, mainly explained by high level of null allele frequencies at these loci.

Population genetic structure of the European hake within the Alboran Sea and adjacent waters

Our study unveiled an overall population structure in the European hake in the Alboran Sea
and among adjacent waters. Despite some genetic differentiation between Atlantic and
Mediterranean samples, our results evidenced that Alboran Sea samples were genetically
closer to Atlantic samples than to eastern Mediterranean samples (Annaba from Algeria or
North Tunisia and North Spain samples). This result agreed with previous studies which found
that Atlantic hakes from Morocco (Roldan et al., 1998), Portugal (Lundy et al., 1999; Castillo
et al., 2004) or Spain (Tanner et al., 2014) clustered closer to Mediterranean hakes than to
Northeast Atlantic hakes (from Galician shelf to up north). Several studies argued that the
Gibraltar Strait acts as a barrier to gene flow for hake, separating the Atlantic and
Mediterranean populations, with limited exchange (Lundy et al., 1999; Castillo et al., 2004,
2005; Pita et al., 2010, 2014). Nevertheless, none of these studies analyzed simultaneously
samples from both side of the Gibraltar Strait (north and south, east and west) and neither in



the close vicinity of the Gibraltar Strait. Our results, with a more exhaustive sampling design
around the Gibraltar Strait, support the existence of ongoing gene flow from the Atlantic to
the Mediterranean Sea with a west-to-east introgression of the Atlantic genetic component
into the Mediterranean Sea and the Alboran Sea being a transition zone between both water
bodies as previously suggested for hake (Milano et al., 2014). However, whether this gene
flow is the result of passive dispersal of eggs and larvae or the active migration of juvenile or
adult has to been determined.

Within the Mediterranean Sea, the genetic divergence observed between Alboran Sea versus
North Tunisia and North of Spain samples indicated limited gene flow between Alboran Sea
and eastern adjacent Mediterranean waters. The Almeria Oran front (Tintore et al., 1988) has
been widely reported as a genetic break in several marine species (Patarnello et al., 2007) and
European hake (Cimmaruta et al., 2005; Pita et al., 2014). However, Roquetas sample from
North Alboran was genetically closer to North Spain samples than North Alboran ones.
Nevertheless, our sampling came from landings and the exact fishing location of Roquetas was
uncertain to argue wether the genetic split was located at the Almeria-Oran front, but this
point should be further investigated with an appropriate sampling design.

Our results, underlined that environmental factors (salinity and chlorophll a) better explained
the genetic variation at SNP loci compared to spatial factors suggesting that environmental
factors could be also shaping the genetic structure of hake. Milano et al. (2014) found
significant correlations between allele frequencies of several SNP outlier loci and seawater
surface temperature and salinity and argued that hake populations might be adapted to local
conditions. Based on two allozyme loci (Gapdh and Gpi-2), a previous study showed a strong
correlation between genetic variation and salinity and temperature values, suggesting that
these two environmental factors may play a role for selective processes and maintaining the
genetic structure of hake.

Management implications

In the Mediterranean Sea, the European hake is assessed and managed following the 27 GSA
and assuming one stock per GSA. This study highlighted the need for taking into account the
genetic connectivity between the different GSA especially between GSA 4 (Algeria) and GSA 3
(South Alboran) with Ghazaouet sample being genetically closer to South Alboran samples
than to Annaba sample and between GSA 4 (Algeria) and GSA 12 (North Tunisia) with Annaba
sample being genetically closer to North Tunisia samples than to Ghazaouet one. However,
this study could not provide information on where the exact boundary should be located
among GSA 3, 4 and 12 as more samples from GSA 4 are needed. Moreover, the limit between
GSA 1 (North Alboran) and GSA6 (North Spain) should be further investigated as Roquetas
sample seemed to be genetically closer to North Spain samples than to North Alboran
samples. Therefore, the assessment and management of European hake within the western
Mediterranean Sea should be occurred jointly among countries as already suggested
(Benchoucha et al.,, 2012). Finally, the ongoing gene flow between the Atlantic and
Mediterranean populations of the European hake suggests that a cohesive stock management
of this species among the ICES, CECAF and GFCM should be considered.
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SUPPORTING INFORMATION

Table S1. f estimator of Fis per sample and locus (significant values in bold; 0.05 threshold
after FDR correction) and null allele frequencies given in brackets when MICRO-CHECKER
detected the occurrence of null alleles. Nnull: no null allele detected.

Sample Locus Mmer-hk20 Mmer-hk9b Mmer-hk3b Mmer-hk29 Mmer-hk34b ~ Mmer-UEAWO01
AGA 0.109 0.07 -0.025 0.577 (0.277) 0.273 (0.126) 0.038
MHD 0.014 0.08 (0.036) 0.043 0.6 (0.285) 0.325 (0.15) 0.06
HUE -0.047 -0.014 -0.013 0.683 (0.326) 0.21(0.093) 0.028
CDz 0.024 -0.006 0.029 0.571(0.271) 0.142 (Nnull)  -0.023
ETP -0.036 0.017 0.092 0.689 (0.322) 0.17 (0.073) 0.023
MLG -0.008 -0.022 -0.027 0.743 (0.353) 0.228 (0.102) -0.018
RQT 0.01 0.033 0.069 0.637 (0.302) 0.264 (0.13) -0.019
MDQ 0.061 0.029 -0.072 0.681 (0.325) 0.193 (Nnull)  0.056
NDR -0.088 -0.002 -0.129 0.676 (0.318)  0.222 (Nnull)  0.139 (Nnull)
GHZ 0.06 0.049 (Nnull)  -0.035 0.738(0.35)  0.253 (0.115) 0.033
ANB -0.006 -0.004 -0.031 0.481 (0.227)  0.21 (Nnull) 0.019
TBK 0.016 -0.021 0.072 0.642 (0.299) 0.118 (0.055) 0.034
GTU 0.028 -0.031 0.111 0.735(0.352) 0.286 (0.127) -0.047
TOR -0.077 0.031 (Nnull)  0.044 0.622 (0.294) 0.321(0.152) -0.009
CAS 0.064 (Nnull)  -0.001 0.047 0.682 (0.324) 0.192 (0.085) -0.013
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Figure S1. Plot of LnP(D) as a function of the number of clusters (K) across the 10 runs for: a)
whole, b) neutral, c) outlier and d) microsatellite datasets respectively.



a

Cross-validation score
0.390 0392 0.394 =

0.388

0.386

b)

Cross-validation score
0.374 0376 0378 0380 0382 0384 0.386

0.372

Cross-validation score vs.
number of ancestral populations

I T T
4 6 8

Number of ancestral populations

Cross-validation score vs.
number of ancestral populations

Number of ancestral populations




¢) Cross-validation score vs.
number of ancestral populations

<
< |
o
o)
<
o
o
o
Q
(8]
w
c o °
il ¥
gc
s *
T
-
% < -
S o
o

0.40
|
-

0.39
|
—
— e
P

T T I T
2 4 6 8 10

Number of ancestral populations

d) Cross-validation score vs.
number of ancestral populations

0.195 0.200

0.190

0.185

0.180

Cross—validation score
0175

0.170

0.165

I I I I I
2 4 6 8 10

Number of ancestral populations

Figure S2. Cross-validation sore profile showing putative ancestral population for: a) whole,
b) neutral, c) outlier and d) microsatellite datasets respectively.



a)

Global ancestry coefficients

.00

g

4
A

€

5

oo

AGA MHD HUE Dz ETP MLG RQT MDQ NDR GHZ ANE TBK GTU TOR CAS
L JL JL JL JL JL J
T T T T T T
ATLANTIC NORTH SOUTH ALGERIA NORTH NORTH
ALBORAN ALBORAN TUNISIA SPAIN

b)

. Global ancestry coefficients

N
AGA MHD HUE bz ETP MLG RQT MDQ NDR GHZ ANB TBK GTU TOR CAS
L JL JL JL J L JL J
L] T T T T T
ATLANTIC NORTH SOUTH ALGERIA NORTH NORTH
ALBORAN ALBORAN TUNISIA SPAIN
]
Global ancestry coefficients
os0 1]
N
. AGA MHD HUE Dz " ETP MLG RQT " MDQ NDR " GHZ ANB " TBK GTU " TOR CAS ,
ATLANTIC NORTH SOUTH ALGERIA NORTH NORTH
ALBORAN ALBORAN TUNISIA SPAIN
d)

1 Global ancestry coefficients

ors

050

05

000
L . . L L . . : L L
t t 1 T u 1 t y T u

[ |

. AGA MHD HUE Dz " ETP MLG RQT " MDQ NDR " GHZ ANB " TBK GTU " TOR CAS ,
T L T T T T
ATLANTIC NORTH SOUTH ALGERIA NORTH NORTH
ALBORAN ALBORAN TUNISIA SPAIN

Figure S3. Barplot representation of the Qmatrix for: a) whole, b) neutral, c) outlier an d)
microsatellite datasets respectively.
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Figure S4. Redundancy analysis (RDA) performed on: a) whole, b) neutral and c) outlier
datasets following the ordistep procedure. Significant variables are shown with arrows.



