

# Stock Assessment Form 

## Demersal species

## Reference year: 2013

Reporting year: 2014

In the southern Adriatic, deep water pink shrimp is distributed mostly between 30 and 600 m depth although it is more abundant between 200 and 400 m depth. It is targeted by trawlers operating up to 500 m depth. For the assessment of the stock status in the GSA 18 different sources of data (fishery dependent and fishery independent) have been used. An exercise using a simulation approach to explore effects of possible different management scenarios has been performed. Given the results from this analysis, based on the whole information from the area, the stock is in overfishing ( $\mathrm{F} 0.1=0.74$; Fcurrent=1.69) and it is necessary to consider a reduction of the fishing mortality towards the reference point F0.1 that can be gradually achieved by multiannual management plans. The contribute of each country to the total production of P. longirostris in the GSA18 is: Italy $67 \%$; Albania $30 \%$; Montenegro 3\%.

# Stock Assessment Form version 1.0 (January 2014) 

Uploader: Zdravko Ikica

Stock assessment form

1 Basic Identification Data .....  3
2 Stock identification and biological information ..... 5
2.1 Stock unit ..... 5
2.2 Growth and maturity ..... 5
3 Fisheries information ..... 9
3.1 Description of the fleet ..... 9
3.2 Historical trends ..... 11
3.3 Management regulations ..... 12
3.4 Reference points ..... 13
4 Fisheries independent information ..... 14
4.1 MEDITS trawl survey ..... 14
4.1.1 Brief description of the direct method used. ..... 14
Direct methods: trawl based abundance indices ..... 14
Direct methods: trawl based length/age structure of population at sea ..... 15
Direct methods: trawl based Recruitment analysis ..... 16
Direct methods: trawl based Spawner analysis ..... 18
4.1.2 Spatial distribution of the resources ..... 20
4.1.3 Historical trends ..... 21
5 Ecological information ..... 22
5.1 Protected species potentially affected by the fisheries ..... 22
5.2 Environmental indexes ..... 22
6 Stock Assessment ..... 23
6.1 XSA ..... 23
6.1.1 Model assumptions ..... 23
6.1.2 Scripts. ..... 23
6.1.3 Input data and Parameters ..... 24
6.1.4 Results ..... 24
6.1.5 Robustness analysis ..... 25
6.1.6 Retrospective analysis, comparison between model runs, sensitivity analysis, etc. ..... 25
6.1.7 Assessment quality ..... 27
6.2 ALADYM ..... 27
6.2.1 Model assumptions ..... 27
6.2.2 Scripts ..... 28
6.2.3 Input data and Parameters ..... 28
6.2.4 Results ..... 28
6.2.5 Robustness analysis ..... 29
6.2.6 Retrospective analysis, comparison between model runs, sensitivity analysis, etc. ..... 29
6.2.7 Assessment quality ..... 29
7 Stock predictions ..... 30
7.1 Short term predictions ..... 30
7.2 Medium term predictions ..... 30
7.3 Long term predictions ..... 34
8 Draft scientific advice ..... 34
8.1 Explanation of codes ..... 35
9 References ..... 36

## 1 Basic Identification Data

| Scientific name: | Common name: | ISCAAP Group: |
| :---: | :---: | :---: |
| Parapenaeus longirostris | Deep-water pink shrimp | 45 |
| $1^{\text {st }}$ Geographical sub-area: | $2^{\text {nd }}$ Geographical sub-area: | $3^{\text {rd }}$ Geographical sub-area: |
| GSA 18 |  |  |
| $4^{\text {th }}$ Geographical sub-area: |  |  |
| $1{ }^{\text {st }}$ Country | $2^{\text {nd }}$ Country | $3^{\text {rd }}$ Country |
| Italy | Albania | Montenegro |
| $4^{\text {th }}$ Country | $5^{\text {th }}$ Country | $6^{\text {th }}$ Country |
| Stock assessment method: (direct, indirect, combined, none) |  |  |
| Combined (Trawl survey, XSA, ALADYM) |  |  |
| Authors: |  |  |
| Bitetto I. ${ }^{1}$, Carbonara P. ${ }^{1}$, Casciaro L. ${ }^{1}$, Ceriola L. ${ }^{2}$, Đuroviæ M. ${ }^{3}$, Facchini M. T. ${ }^{1}$, Hoxha A. ${ }^{4}$, Ikica Z. ${ }^{3}$, Joksimoviæ A. ${ }^{3}$, Kolitari J. ${ }^{4}$, Kroqi G. ${ }^{4}$, Lembo G. ${ }^{1}$, Markoviæ O. ${ }^{3}$, Milone N. ${ }^{2}$, Spedicato M. T. ${ }^{1}$ |  |  |
| Affiliation: |  |  |
| ${ }^{1}$ COISPA Tecnologia \& ricerca, Bari - Italy; ${ }^{2}$ AdriaMed, FAO, Rome - Italy; ${ }^{3}$ Institute of Marine Biology, University of Montenegro, Kotor - Montenegro; ${ }^{4}$ University of Tirana - Albania |  |  |

The ISSCAAP code is assigned according to the FAO 'International Standard Statistical Classification for Aquatic Animals and Plants' (ISSCAAP) which divides commercial species into 50 groups on the basis of their taxonomic, ecological and economic characteristics. This can be provided by the GFCM secretariat if needed. A list of groups can be found here:

## http://www.fao.org/fishery/collection/asfis/en

Direct methods (you can choose more than one):

- Acoustics survey
- Egg production survey
- Trawl survey
- SURBA
- Other (please specify)

Indirect method (you can choose more than one):

- ICA
- VPA
- LCA
- AMCI
- XSA
- Biomass models
- Length based models
- Other (please specify)

Combined method: you can choose both a direct and an indirect method and the name of the combined method (please specify)

We have applied the direct method using trawl survey data for the estimation of indicators and for tuning. The XSA among the indirect methods and Aladym as simulation model.

## 2 Stock identification and biological information

### 2.1 Stock unit

The Southern Adriatic Sea extends from the line between Gargano and Lastovo to the boundary with the Ionian Sea at the latitude of Otranto (Artegiani et al., 1997). This southern section of the entire Adriatic Sea is characterised by the presence of a deep central depression known as the "South Adriatic Pit" (or Bari Pit). The seabed reaches a depth of $1,233 \mathrm{~m}$ in this area. The northern and southern portions of the Southern Adriatic Sea feature substantial differences; the first contains a wide continental shelf (the distance between the coastline and a depth of 200 m is around 45 nautical miles) and a very gradual slope; in the second, the isobathic contours are very close, with a depth of 200 m already found at around 8 miles from the Cape of Otranto. The continental shelf break is at a depth of around $160-200 \mathrm{~m}$ and is furrowed by the heads of canyons running perpendicular to the line of the shelf. The Adriatic Sea, together with the Levant basin, is one of three areas in the Mediterranean where down-welling processes produced by surface cooling lead to the formation of so-called "dense waters", rich in oxygen, which supply the lower levels (Cataudella S. \& Spagnolo M., 2011).

The stock of the deep-water rose shrimp was assumed in the boundaries of the whole GSA18, lacking specific information on stock identification.

The deep-water pink shrimp, is one of the target species of the central and southern Adriatic multispecies trawl catches and is an epibenthic short-lived species, inhabiting preferably muddy sediments (Karlovac, 1949). In the southern Adriatic it is distributed mostly between 30 and 600 m depth although it is more abundant between 200 and 400 m depth (Pastorelli et al., 1996). Larger specimens are caught mainly in deeper waters.

According to previous studies (Abellò et al., 2002; Mannini et al., 2004), the eastern part the south Adriatic is characterised by high occurrence and abundance of the species, given the characteristics of the water masses (warmer and saltier) and the lower fishing pressure; in particular an higher abundance of the juvenile component of the population was reported (Ungaro et al., 2006). However according to MEDITS time series the abundance of the species was growing even on the western side since 2002.

Spawning time is considered extended almost all the year around, as for other Mediterranean areas (Relini, 1999) and sex ratio, as estimated from trawl-survey data, is approximately 0.5 . The abundance of this shrimp was steadily growing from 1996 to 2005 (Ungaro et al., 2006).

### 2.2 Growth and maturity

According to historical information on growth in the Adriatic area, P. longirostris can grow up to 16 cm (males) and 19 cm (females) total length. However, males are usually 8 to 14 cm and females from 12 to 16 cm total length. During the expedition "Hvar", the largest specimen caught was a female 17 cm in length (Karlovac, 1949). The growth rate of $P$. longirostris is high, but differs between sexes. Size distribution and growth parameters indicate a life cycle of 3-4 years (Froglia, 1982). Historical parameters of the lengthweight relationship reported in the literature for carapace length expressed in mm and both sexes combined (Marano et al., 1998) are $a=0.0034, b=2.4364$.

Estimates of growth parameters estimated within the DCF framework using the length frequency distribution analysis and von Bertalanffy model gave the following parameters : $\mathrm{CL}_{\infty}=45.0 \mathrm{~mm}$; $\mathrm{K}=0.6$; $\mathrm{t}_{0}=-$ 0.20 .

The parameters of the length-weight relationship estimated within the DCF for sexes combined and carapace length expressed in mm were: $a=0.0043, b=2.376$.

In the Mediterranean Sea, both sexes of $P$. longirostris reaches maturity in the first year of life (Froglia, 1982).

According to the data obtained in the Data Collection Framework (DCF), the maturity ogive (mature females were specimens belonging to the maturity stage 2 onwards) estimated by a maximum likelihood
 $0.83 \mathrm{~mm}( \pm 0.03 \mathrm{~mm})$ of carapace length.

Information about maximum observed length, size at first maturity and recruitment size are reported in Table 2.2-1 and in Fig. 2.2-1.

The sex ratio of commercial catches evidenced the prevalence of males in the size class from 16 to 18 mm and from 23 to 25 mm , while from 27 mm onwards the proportion of females was dominant.

Table 2.2-1: Maximum size, size at first maturity and size at recruitment.

| Somatic magnitude measured |  | LC | Units | mm |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Sex | Fem | Mal | Combined | Reproduction <br> season |  |
| Maximum <br> size <br> observed | 45 | 40 |  | Recruitment <br> season | March - December |
| Size at first <br> maturity |  |  | 18.3 | Spawning area | Offshore of eastern and <br> western coast of the <br> entire GSA 18 |
| Recruitment <br> size to the <br> fishery |  |  | Nursery area | Nuclei of recruit <br> aggregations on both <br> sides, but more <br> relevant along the <br> eastern side |  |



Fig. 2.2-1. Maturity ogive for $P$. longirostris females, binomial GLM on DCF data.
For the assessment a vector natural mortality estimated by PRODBIOM method (Abella et al., 1997) for sex combined. The vector of proportion of mature individuals by age has been derived slicing the maturity ogive by length with the von Bertalanffy coefficients for sex combined reported above. LFDA (FAO package) algorithm has been used for the age slicing.

Table 2-2.2: $M$ vector and proportion of matures by size or age (Males)

| Size/Age | Natural mortality | Proportion of matures |
| :---: | :---: | :---: |
| 0 | 1.41 | 0.47 |
| 1 | 0.81 | 0.98 |
| 2 | 0.7 | 1.00 |
| $3+$ | 0.65 | 1.00 |

Table 2-2.3: $M$ vector and proportion of matures by size or age (Females)

| Size/Age | Natural mortality | Proportion of matures |
| :---: | :---: | :---: |
| 0 | 1.41 | 0.47 |
| 1 | 0.81 | 0.98 |
| 2 | 0.7 | 1.00 |
| $3+$ | 0.65 | 1.00 |

Table 2-3: Growth and length weight model parameters


## 3 Fisheries information

### 3.1 Description of the fleet

The Southern Adriatic sea makes a substantial contribution to national fishery production, with an input comparable to that of the Strait of Sicily, accounting for about 13\% (Cataudella S. \& Spagnolo M., 2011). The fleet data are referred to the whole GSA and are from the GFCM Task 1 Statistical Bulletin 2010. Catch data in the table 3.1.2 below reported are referred to the year 2012(DCF data for Italy, and data from ADRIAMED pilot study and National Statistics for Albania and Montenegro). The operational units ITA18E0333-DPS, ITA18F0333-DPS, ALB 18 E 03 33-DPS and ALB 18 F 03 33DPS include also demersal slope fishing (mixed demersal according to DCF classification).

The catch data from the whole GSA18 including the east side are below reported:
Table 3-1: Description of operational units exploiting the stock

|  | Country | GSA | Fleet Segment | Fishing Gear Class | Group of Target Species | Species |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Operational Unit 1 | ITA | 18 | $\begin{gathered} \text { D - Trawls (6- } \\ 12 \mathrm{~m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 2 | ITA | 18 | $\begin{gathered} \text { E - Trawls (12- } \\ 24 \text { m) } \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 3 | ITA | 18 | $\begin{gathered} \text { F - Trawls ( }>24 \\ \mathrm{~m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 4 | MNE | 18 | $\begin{gathered} \text { D - Trawls (6- } \\ 12 \mathrm{~m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 5 | MNE | 18 | $\begin{gathered} \text { E - Trawls (12- } \\ 24 \mathrm{~m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 6 | ALB | 18 | $\begin{gathered} \text { D - Trawls (6- } \\ 12 \mathrm{~m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 7 | ALB | 18 | $\begin{gathered} \text { E - Trawls (12- } \\ 24 \mathrm{~m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |
| Operational Unit 8 | ALB | 18 | $\begin{gathered} \text { F - Trawls }(>24 \\ \mathrm{m}) \end{gathered}$ | 03 - Trawls | 33 - Demersal shelf species | DPS |

Table 3.1-2: Catch, bycatch, discards and effort by operational unit in the reference year

| Operational <br> Units* | Fleet <br> ( $\mathbf{n}^{\circ}$ of <br> boats)* | Catch (T or <br> kg of the <br> species <br> assessed) | Other <br> species <br> caught <br> (names and <br> weight ) | Discards <br> (species <br> assessed) | Discards <br> (other <br> species <br> caught) | Effort <br> (units) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ITA <br> Operational <br> Units 1+2+3 | 455 | 733.7 |  |  |  |  |
| ALB <br> Operational <br> Units 6+7+8 | 199 | 334.6 |  |  |  |  |
| MNE <br> Operational <br> Units 4+3 | 20 | 31.0 |  |  |  |  |
| Total | 674 | 1092.8 |  |  |  |  |

Table 3.1-3. Catch values used in the assessments

| Classification |  | Catch (t) |
| :---: | :---: | :---: |
| 2007 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 863.0 |
| 2007 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $309.4{ }^{1}$ |
| 2007 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | $39.0^{1}$ |
|  | 2007 Total | 1211.4 |
| 2008 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 897.7 |
| 2008 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $309.4{ }^{2}$ |
| 2008 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | 39.0 |
|  | 2008 Total | 1246.1 |
| 2009 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 934.0 |
| 2009 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $275.0^{2}$ |
| 2009 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | 35.7 |
|  | 2009 Total | 1244.6 |
| 2010 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 880.8 |
| 2010 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $409.4^{2}$ |
| 2010 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | 32.3 |
|  | 2010 Total | 1322.4 |
| 2011 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 862.5 |
| 2011 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $328.1^{2}$ |
| 2011 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | 26.7 |
|  | 2011 Total | 1217.3 |
| 2012 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 522.8 |
| 2012 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $334.6{ }^{3}$ |
| 2012 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | 21.9 |
|  | 2012 Total | 879.3 |
| 2013 ITA 18 D 0333 - ITA 18 E 0333 - ITA 18 F 0333 |  | 733.7 |
| 2013 ALB 18 D 0333 - ALB 18 E 0333 - ALB 18 F 0333 |  | $334.6{ }^{4}$ |
| 2013 MNE 180333 - MNE 18 E 0333 - MNE 18 F 0333 |  | 31.0 |

${ }^{1}$ Due to the lack of data, the 2007 catch for Albania and Montenegro was assumed to be identical to the catch of 2008
${ }^{2}$ Catches in Albania were based on export data, which was assumed to equal $64 \%$ of the total catch (FAO Yearbook of Fishery Statistics)
${ }^{3}$ Preliminary data of Ministry of Environment, forests and Water Management of Albania for 2012.
${ }^{4}$ Due to the lack of data, the total production of Albania was assumed to be equal to 2013.

### 3.2 Historical trends

Available time series for the deep-water pink shrimp landings in GSA 18 is relatively short (Table 3.2-1), consisting of only six years (2007-2012), and not complete for all countries in question. However, several assumptions have been made in order to overcome these limits. The reduction of landings observed in 2011 continued, and was even more pronounced in 2012, marking the lowest point in the time series.

Landing values in Italy seem to be closely correlated with the nominal fishing effort (kW×days) values (Fig. 3.2-1).

Table 3.2-1. Landing data for GSA 18 by year and country

| Year | Montenegro | Albania | Italy | Total |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{2 0 0 7}$ | 39.0 | 309.4 | 863.0 | 1211.4 |
| $\mathbf{2 0 0 8}$ | 39.0 | 309.4 | 897.7 | 1246.1 |
| $\mathbf{2 0 0 9}$ | 35.7 | 275 | 934.0 | 1244.6 |
| $\mathbf{2 0 1 0}$ | 32.3 | 409.4 | 880.8 | 1322.4 |
| $\mathbf{2 0 1 1}$ | 26.7 | 328.1 | 862.5 | 1217.3 |
| $\mathbf{2 0 1 2}$ | 21.9 | 334.6 | 522.8 | 879.3 |
| $\mathbf{2 0 1 3}$ | 31.0 | 334.6 | 733.7 | 1099.3 |



Fig. 3.2-1. Nominal fishing effort in kW×days by fishing technique for the western side (Italian coast) of GSA 18 from DCF.

### 3.3 Management regulations

In Italy management regulations are based on technical measures, closed number of fishing licenses for the fleet and area limitation (distance from the coast and depth). In order to limit the over-capacity of fishing fleet, the Italian fishing licenses have been fixed since the late eighties and the fishing capacity has been gradually reduced. Other measures on which the management regulations are based regards technical measures (mesh size), minimum landing sizes (EC 1967/06) and seasonal fishing ban, that in southern Adriatic has been mandatory since the late eighties.

In 2008 a management plan was adopted, that foresaw the reduction of fleet capacity associated with a reduction of the time at sea. Two biological conservation zone (ZTB) were permanently established in 2009 (Decree of Ministry of Agriculture, Food and Forestry Policy of 22.01.2009; GU n. 37 of 14.02.2009) along the mainland, offshore Bari ( $180 \mathrm{~km}^{2}$, between about 100 and 180 m depth), and in the vicinity of Tremiti Islands ( $115 \mathrm{~km}^{2}$ along the bathymetry of 100 m ) on the northern border of the GSA where a marine protected area (MPA) had been established in 1989. In the former only the professional small scale fishery using fixed nets and long-lines is allowed, from January 1st to June 30th, while in the latter the trawling fishery is allowed from November 1st to March 31 and the small scale fishery all year round. Recreational fishery using no more than 5 hooks is allowed in both the areas. Since June 2010 the rules implemented in the EU regulation (EC 1967/06) regarding the cod-end mesh size and the operative distance of fishing from the coasts are enforced.

In Montenegro, management regulations are based on technical regulations, such as mesh size (Official Gazette of Montenegro, 8/2011), including the minimum landing sizes (Official Gazette of Montenegro, 8/2011), and a regulated number of fishing licenses and area limitation (no-fishing zone up to 3 NM from the coastline or 8 NM for trawlers of $24+\mathrm{m}$ LOA). Currently there are no MPAs or fishing bans in Montenegrin waters.

In Albania, a new law "On fishery" has now been approved, repealing the Law n . 7908. The new law is based on the main principles of the CFP, it reflects Reg. 1224/2009 CE ; Reg.1005/2008 CE; Reg. 2371/2002 CE; Reg. 1198/2006 CE; Reg. 1967/2006 CE; Reg. 104/2000; Reg. 1543/2000 as well as the GFCM recommendations. The legal regime governing access to marine resources is being regulated by a licensing system. Regarding conservation and management measures, minimum legal sizes and minimum mesh sizes is those reflected in the CE Regulations. Albania has already an operational vessel register system. It is forbidden to trawl at less than 3 nautical miles ( nm ) from the coast or inside the 50 m isobath when this distance is reached at a smaller distance from the shore.

### 3.4 Reference points

Table 3.4-1: List of reference points and empirical reference values previously agreed (if any)

| Indicator | Limit <br> Reference <br> point/emp <br> irical <br> reference <br> value | Value | Target <br> Reference <br> point/empi <br> rical <br> reference <br> value | Value |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B |  |  |  |  | Comments |
| SSB |  |  | F0.1 | 0.75 | Assessment presented during <br> GFCM Working Group Demersal <br> held d in Bar, Montenegro, 28 <br> January - 1 February 2014 |
| F |  |  |  |  |  |
| Y |  |  |  |  |  |
| CPUE |  |  |  |  |  |
| Index of <br> Biomass at <br> sea |  |  |  |  |  |

## 4 Fisheries independent information

### 4.1 MEDITS trawl survey

### 4.1.1 Brief description of the direct method used

The sampling design is random stratified with number of haul by stratum proportional to stratum surface. Data were assigned to strata based upon the shooting position and average depth (between shooting and hauling depth). Hauls noted as valid were used only, including stations with no catches (zero catches are included).
The abundance and biomass indices by GSA were calculated through stratified means (Cochran, 1953; Saville, 1977). The variation of the stratified mean is then expressed as coefficient of variation respect to the mean.

## Direct methods: trawl based abundance indices

Table 4.1.1-1: Trawl survey basic information

| Survey | MEDITS | Trawler/RV | PEC |
| :--- | :--- | :--- | :--- |
| Sampling season | Summer |  |  |
| Sampling design | Stratified sampling design with the number of hauls proportionate to the <br> strata surface |  |  |
| Sampler (gear used) | GOC 73 |  |  |
| Cod -end mesh size <br> as opening in mm | 20 mm |  |  |
| Investigated depth <br> range (m) | $10-800 \mathrm{~m}$ |  |  |

Table 4.1.1-2: Trawl survey sampling area and number of hauls

| Stratum | Total surface <br> $\left(\mathbf{k m}^{2}\right)$ | Trawlable surface <br> $\left(\mathbf{k m}^{2}\right)$ | Swept area <br> $\left(\mathbf{k m}^{2}\right)$ | Number of <br> hauls |
| :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 - 5 0 ~ m}$ | 3430 |  |  | 12 |
| $\mathbf{5 0 - 1 0 0 ~ m}$ | 6435 |  |  | 20 |
| $\mathbf{1 0 0 - 2 0 0 ~ m}$ | 9664 |  |  | 31 |
| $\mathbf{2 0 0 - 5 0 0 ~ m}$ | 4761 |  |  | 13 |
| $\mathbf{5 0 0}-\mathbf{8 0 0} \mathbf{m}$ | 4718 |  |  | 90 |
| Total $(\mathbf{1 0 - 8 0 0} \mathbf{~ m})$ | 29008 |  |  |  |

The haul positions are represented in the map below.


Fig. 4.1.1-1. Map of MEDITS haul positions in the GSA 18.
The abundance indices and the associated coefficient of variation for 2012 are reported in the table below.
Table 4.1.1-3: Trawl survey abundance and biomass results

| Depth Stratum | Years | kg per <br> $\mathbf{k m}^{\mathbf{2}}$ | CV or <br> other | $\mathbf{N}$ per <br> $\mathbf{k m}^{\mathbf{2}}$ | CV or <br> other |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 - 5 0 \mathbf { ~ m }}$ | 2013 | 1.0 | 102.9 | 272 | 102.9 |
| $\mathbf{5 0 - 1 0 0} \mathbf{~ m}$ | 2013 | 1.5 | 74.3 | 379 | 75.0 |
| $\mathbf{1 0 0} \mathbf{- \mathbf { 2 0 0 } \mathbf { ~ m }}$ | 2013 | 2.0 | 31.6 | 328 | 38.9 |
| $\mathbf{2 0 0 - 5 0 0} \mathbf{~ m}$ | 2013 | 5.5 | 30.5 | 685 | 32.0 |
| $\mathbf{5 0 0} \mathbf{- 8 0 0} \mathbf{~ m}$ | 2013 | 0.2 | 67.6 | 15 | 61.9 |
| Total $\mathbf{( 1 0 - 8 0 0} \mathbf{~ m})$ | 2013 | 2.1 | 21.5 | 340 | 26.6 |

The number are standardised to the square km but not raised to the overall area assuming the same catchability.

Direct methods: trawl based length/age structure of population at sea

## Slicing method

The maturity scale used for the maturity stages of this species is MEDITS scale (Medits Handbook 2013, version 7).

The age slicing method used for this stock is the LFDA (FAO package) algorithm implemented by means of a routine in $R$.

Table 4.1.1-4: Trawl survey results by length or age class

| N $/ \mathrm{km}^{2}$ (Total or sex <br> combined) by <br> Length or Age class | Year |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathbf{2 0 0 7}$ | $\mathbf{2 0 0 8}$ | $\mathbf{2 0 0 9}$ | $\mathbf{2 0 1 0}$ | $\mathbf{2 0 1 1}$ | $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ |
| $\mathbf{0}$ | 106.46 | 178.37 | 712.09 | 476.10 | 461.56 | 455.21 | $\mathbf{2 4 1 . 1 7}$ |
| $\mathbf{1}$ | 156.08 | 498.33 | 335.88 | 302.41 | 225.85 | 321.79 | 87.84 |
| $\mathbf{2}$ | 39.24 | 168.42 | 25.35 | 24.61 | 15.66 | 8.93 | 11.02 |
| $\mathbf{3 +}$ | 17.69 | 47.54 | 2.47 | 4.95 | 0.64 | 0.07 | 0.37 |
| Total | 319.47 | 892.66 | 1075.79 | 808.06 | 703.71 | 786.00 | 340.39 |


| Sex ratio by <br> Length or Age <br> class | Year |  |  |
| :--- | :--- | :--- | :--- |
|  | All <br> years | $\ldots$. | $\ldots .$. |
|  |  |  |  |
|  |  |  |  |
|  | 0.5 |  |  |
| Total |  |  |  |

Comments
The number are standardised to the square km but not raised to the overall area assuming the same catchability (=1).

## Direct methods: trawl based Recruitment analysis

Table 4.1.1-5: Trawl surveys; recruitment analysis summary

| Survey | MEDITS | Trawler/RV |
| :--- | :--- | :--- |
| PEC |  |  |
| Survey season | summer |  |
| Cod -end mesh size as opening in mm | 20 |  |
| Investigated depth range (m) | $10-800$ |  |
| Recruitment season and peak (months) | All year round (autumn-spring) |  |
| Age at fishing-grounds recruitment | 0 |  |
| Length at fishing-grounds recruitment | $\sim 7 \mathrm{~mm} \mathrm{CL}$ |  |

Table 4.1.1-6: Trawl surveys; recruitment analysis results (<=14 mm)

| Years | Area in <br> $\mathbf{k m}^{\mathbf{2}}$ | N of <br> recruit per <br> $\mathbf{k m}^{\mathbf{2}}$ | CV or <br> other |
| :--- | :---: | :---: | :---: |
| $\mathbf{1 9 9 6}$ | 29008 | 63 | 33.4 |
| $\mathbf{1 9 9 7}$ | 29008 | 13 | 35.3 |
| $\mathbf{1 9 9 8}$ | 29008 | 45 | 67.1 |
| $\mathbf{1 9 9 9}$ | 29008 | 6 | 28.1 |
| $\mathbf{2 0 0 0}$ | 29008 | 34 | 25.3 |
| $\mathbf{2 0 0 1}$ | 29008 | 85 | 16.3 |
| $\mathbf{2 0 0 2}$ | 29008 | 39 | 24.4 |
| $\mathbf{2 0 0 3}$ | 29008 | 97 | 28.2 |
| $\mathbf{2 0 0 4}$ | 29008 | 40 | 21.5 |
| $\mathbf{2 0 0 5}$ | 29008 | 88 | 18.5 |
| $\mathbf{2 0 0 6}$ | 29008 | 14 | 31.5 |
| $\mathbf{2 0 0 7}$ | 29008 | 3 | 38.0 |
| $\mathbf{2 0 0 8}$ | 29008 | 8 | 40.6 |
| $\mathbf{2 0 0 9}$ | 29008 | 170 | 38.2 |
| $\mathbf{2 0 1 0}$ | 29008 | 122 | 26.7 |
| $\mathbf{2 0 1 1}$ | 29008 | 123 | 25.3 |
| $\mathbf{2 0 1 2}$ | 29008 | 109 | 23.7 |
| $\mathbf{2 0 1 3}$ | 29008 | 340 | 90.4 |

Comments

Recruitment follows a quasi-continuous pattern with main peaks in spring and autumn.
Recruits mainly occur between 100 and 200 m depth. Size of recruits ranged between 14 mm and 19 mm CL .

The threshold size ( 14.5 mm ) to extract recruitment indices has been derived by the separation of length frequency distribution (Batthacharya method) applied to the years when the first mode was well detectable. The abundance indices of individuals $<=14 \mathrm{~mm}$ has been considered has recruitment index.

Indices are related to the total area ( $\mathrm{N} / \mathrm{Km}^{\wedge} 2$, not raised to the total area).


## Direct methods: trawl based Spawner analysis

Table 4.1.1-7: Trawl surveys; spawners analysis summary

| Survey | MEDITS | Trawler/RV |
| :--- | :--- | :--- |
| PEC |  |  |
| Survey season | summer |  |
| Investigated depth range (m) | $10-800$ |  |
| Spawning season and peak (months) | All year round (April-May; September-October) |  |

Table 4.1.1-8: Trawl surveys; spawners analysis results (>= 18 mm )

| Years | Area in <br> km $^{2}$ | N of <br> spawners <br> per km² | CV or <br> other |
| :--- | :--- | ---: | ---: |
| 1996 | 29008 | 705 | 23.5 |
| 1997 | 29008 | 229 | 18.8 |
| 1998 | 29008 | 434 | 19.5 |
| 1999 | 29008 | 191 | 15.4 |
| 2000 | 29008 | 276 | 18.6 |
| 2001 |  | 439 | 15.6 |


| 2002 | 29008 | 472 | 12.6 |
| :--- | :--- | ---: | ---: |
| 2003 | 29008 | 580 | 18.1 |
| 2004 | 29008 | 776 | 21.7 |
| 2005 | 29008 | 1198 | 15.7 |
| 2006 | 29008 | 710 | 15.3 |
| 2007 | 29008 | 311 | 22.9 |
| 2008 | 29008 | 858 | 21.4 |
| 2009 | 29008 | 672 | 18.3 |
| 2010 | 29008 | 584 | 18.9 |
| 2011 | 29008 | 464 | 18.9 |
| 2012 | 29008 | 588 | 21.1 |
| 2013 | 29008 | 188 | 41.0 |

## Comments

P. longirostris is a sequential spawners, spawning all year round with peaks in April-May and September-October. Adult aggregations of females are mainly located in the eastern part of the GSA18, along the Albania coast.

Indices are related to the total area ( $\mathrm{N} / \mathrm{km}^{\wedge} 2$, not raised to the total area).


### 4.1.2 Spatial distribution of the resources

The geographical distribution pattern of pink shrimp in the GSA 18 has been studied using trawlsurvey data and geostatistical methods. In these studies the abundance indices of recruits were analysed. Results highlighted that areas located in the Gulf of Manfredonia and between Monopoli and Brindisi coasts within 200 m depth are characterised by high concentration of pink shrimp recruits reaching 2000 individuals/km2 in 2000-2001. A peak of 5000 individuals/km2 was observed in the southernmost location (border between GSA 18 and 19) off Capo S. Maria di Leuca (e.g. Carlucci et al., 2009).

Pink shrimp nursery areas obtained applying the indicator kriging techniques are reported below (Fig. 4.1.2-1).


Fig. 4.1.2-1. Geographical distribution patters of pink shrimp nursery areas as estimated from MEDITS

In the MEDISEH project (DG MARE Specific Contract SI2.600741, call for tenders MARE/2009/05), nursery areas and spawner aggregations have been detected, mainly in the eastern part of the GSA18, along the Albania coasts, where a persistent spawning ground is localized.

Warmer and saltier waters flowing in the eastern side are a favourable environmental condition for the preferential distribution of this species.


Fig. 4.1.2-2. Locations of persistent nurseries of $P$. longirostris in GSA 18


Fig. 4.1.2-3. Locations of persistent spawning areas of $P$. longirostris in GSA 18

### 4.1.3 Historical trends

Observed abundance and biomass indices of $P$. longirostris are given on the figures below (Fig. 4.1.3-1, 4.1.3-2).


Fig. 4.1.3-1. Estimated abundance indices ( $\mathrm{N} / \mathrm{km}^{2}$ ) of $P$. longirostris in GSA 18, 1996-2013


Fig. 4.1.3-2. Estimated biomass indices ( $\mathrm{kg} / \mathrm{km}^{2}$ ) of $P$. longirostris in GSA 18, 1996-2013
Both estimated abundance and biomass indices show similar trends, with a sharp drop in values in 2005-2007, a recovery until 2009 followed by a gradual drop until 2011 and a slight recovery in 2012.

## 5 Ecological information

### 5.1 Protected species potentially affected by the fisheries

This analysis has not been carried out.

### 5.2 Environmental indexes

None environmental index used.

## 6 Stock Assessment

### 6.1 XSA

Standardized LFD abundance indices (N/km2) for the whole GSA18 from MEDITS trawl survey data from 1996 to 2012 have been used for the analysis. The length structure of landings and production by fishing segment from DCF has been used for west side, while for the east side data collected within a pilot study in the framework of Adriamed project (Montenegro) and from National Statistics (Albania).

All the LFDs have been transformed in age distributions by age slicing procedure to be used as XSA input.

### 6.1.1 Model assumptions

The major assumption of the method is the flat selectivity for the oldest ages (selectivity as classical ogive). The method performs a tuning by survey index by age. The method was applied using the age data obtained by the slicing of the length frequency distributions of the landing and survey data.

### 6.1.2 Scripts

The rows related to the best run (shrinkage 0.5 ) are reported.

```
library(FLCore)
library(FLEDA)
library(FLXSA)
library(FLAssess)
library(FLash)
library(ggplotFL)
library(plyr)
library(FLBRP)
dps.stk <- readFLStock("DPS18.IND", no.discards=TRUE)
units(harvest(dps.stk))<-"f"
range(dps.stk)["minfbar"] <- 0
range(dps.stk)["maxfbar"] <- 2
dps.stk <- setPlusGroup(dps.stk, 3)
dps.idx <- readFLIndices("DPS18TUN.DAT")
# settings of XSA
FLXSA.control.dps 05 <- FLXSA.control(x=NULL, tol=1e-09, maxit=30, min.nse=0.3, fse=0.5,
rage=-1, qage=1, shk.n=TRUE, shk.f=TRUE, shk.yrs=2,shk.ages=2,window=100, tsrange=20,
tspower=3, vpa=FALSE)
dps.xsa_05 <- FLXSA(dps.stk, dps.idx, FLXSA.control.dps_05)
dps.stk_05 <- dps.stk+dps.xsa_05
#summary plot
plot(dps.stk_05,main="Shrinkage 0.5")
#diagnostic and residuals
diagnostics(dps.xsa 05)
res05<-as.data.framē(index.res(dps.xsa_05))
#plot of residuals
res05[["sign"]] = ifelse(res05[["data"]] >= 0, "positive", "negative")
ggplot(data=res05) +geom_point(aes(x=year, y=age, size=abs(data), colour=sign), shape=16)+
scale_colour_manual(values=c("positive"="red","negative"=darkblue"))
+scale size continuous(breaks = seq(-2, 2, by = 0.2))+ggtitle("Log catchability residuals
at age by year Sh05")
```

\#retrospective analysis
dps.stk.retro_05 <- retro(dps.stk, dps.idx, FLXSA.control.dps_05, 3)
plot(dps.stk.retro_05)

### 6.1.3 Input data and Parameters

XSA uses catch-at-age, mean weight at age, landing, proportion of mature individuals by age, natural mortality by age and mean weight at age in stock to perform the analysis, which is tuned by survey data (MEDITS) by age. Catch-at-age and tuning data are presented in tables 6.1.3-1 and 6.1.3-2, respectively.

Table 6.1.3-1. Catch-at-age data used in the assessment

|  |  | Catch-at-age (thousands) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age class | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 |  |
| 0 | 80468.18 | 83144.69 | 81619.69 | 79579.73 | 61835.43 | 70727.21 | 97355.53 |  |
| 1 | 81757.3 | 83421.46 | 83107.23 | 95555.83 | 85634.21 | 53773.86 | 63899.06 |  |
| 2 | 4015.483 | 3476.428 | 2992.274 | 4082.589 | 3468.042 | 1674.156 | 1646.388 |  |
| $3+$ | 129.2862 | 106.7604 | 84.23457 | 158.3037 | 182.1678 | 40.063 | 34.73072 |  |

Table 6.1.3-2. Tuning data used in the assessment

|  |  | Catch-at-age (N/km ${ }^{2}$ ) |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Age class | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2013 |
| 0 | 106.46 | 178.37 | 712.09 | 476.1 | 461.56 | 455.21 | 241.17 |
| 1 | 156.08 | 498.33 | 335.88 | 302.41 | 225.85 | 321.79 | 87.84 |
| 2 | 39.24 | 168.42 | 25.35 | 24.61 | 15.66 | 8.93 | 11.02 |
| 3 | 17.69 | 47.54 | 2.47 | 4.95 | 0.64 | 0.07 | 0.38 |

Discards data of 2009, 2010, 2011 and 2012 were available for the western side. The proportion of the discards of deep-water pink shrimp in the GSA 18 was generally less than $10 \%$. Considering the amount of discards and the fact that the collection of discard data was not foreseen in DCF in 2007 and 2008 and discards data are not available for the east side these data were not used in the analyses.

Additional settings for XSA are listed below:

- Catchability independent of size for all ages
- Catchability independent of age for ages > 1
- S.E. of the mean to which the estimates are shrunk $=0.5$
- Minimum standard error for population estimates derived from each fleet $=0.3$


### 6.1.4 Results

Fishing mortality (F) shows the minimum value of $1.2\left(\bar{F}\right.$ or $\left.F_{\text {bar }}\right)$ in 2009, and a maximum of 1.7 in 2011 and 2013. Average $F$ for the period of last three years was 1.6 (Fig. 6.1.5-1).

The increase of F in the last year seems consistent with the constant landing associated to the decrease in decrease in SSB.

The $\mathrm{F}_{0.1}$ value estimated on the basis of the XSA was 0.74 by FLBRP package (FLR library).
The summary of the best run, chosen for the advice is reported below in Fig. 6.1.5-1.


Fig. 6.1.5-1. Summary XSA results for $P$. longirostris in GSA 18.

### 6.1.5 Robustness analysis

### 6.1.6 Retrospective analysis, comparison between model runs, sensitivity analysis, etc.

Sensitivity analysis with shrinkage values of $0.5,1.0,1.5$ and 2.0 was performed on the results, and on the basis of the residuals and of the retrospective analyses, shrinkage of 0.5 (Fig. 6.1.6-1) was chosen as the best one.


Fig. 6.1.6-1. Log catchability residuals at shrinkage 0.5


Fig. 6.1.6-2. Retrospective analysis results

The residuals do not shows any particular trend and the retrospective analysis seems to be consistent.

### 6.1.7 Assessment quality

The assumption of ogive selectivity for this species seems consistent. The length of the time series is consistent with the lifespan of the species, allowing to obtain plausible results.

### 6.2 ALADYM

### 6.2.1 Model assumptions

An exercise was accomplished using ALADYM (Lembo et al., 2009) simulation model, to figure out effects of possible management measures. The model is belonging to the family of pool-dynamic models. ALADYM uses a monthly time scale and a multi-fleet/gear approach. For this assessment classical ogive selectivity function has been assumed for all the fleet segments, with different parameters according to the mesh size used by each fleet segments.

The recruitment is assumed equal to the geometric mean of the last three years (576168 thousands) in the projections.

The hind-casting approach has been used for this assessment for comparison with the XSA results
in the period 2007-2013 and to perform the projections for the future.

### 6.2.2 Scripts

Version 10.1 has been used for the assessment. Inputs and parameters are specified in the following paragraphs.

### 6.2.3 Input data and Parameters

For the ALADYM analysis, four fleet segments have been assumed:

- Italian trawlers <24 m;
- Italian trawlers >24 m;
- Albanian trawlers;
- Montenegrin trawlers.

Until 2010, selectivity of all fleet segments was assumed to correspond to the classical ogive with $\mathrm{SL}_{50 \%}=14.2 \mathrm{~mm}$ and selectivity range (SR) of 2.9 mm . From 2011, all fleet segments apart from Montenegrin trawlers are assumed to use diamond mesh size of 50 mm and corresponding values of $\mathrm{SL}_{50 \%}=17 \mathrm{~mm}$ and $\mathrm{SR}=2.9 \mathrm{~mm}$. Montenegro continues to use 40 mm diamond mesh size, with previously mentioned corresponding values.
DCF data for Italian trawlers have been used (monthly production and effort). For Albania and Montenegro, annual production data has been split to 12 months equally. For Montenegro, monthly effort data has been used, while data for Albania assumes constant effort.
Natural mortality (M), maturity, and other relevant data used are the same as for the XSA. The recruitment and fishing (F) and total mortality (Z) values used correspond to the results obtained through the XSA (hind-casting).

For 2014 has been assumed the same recruitment and total mortality, as well as the same proportions of production among the fleet segments and the same production.

### 6.2.4 Results

A satisfactory fit has been obtained with ALADYM simulation model for all the fleet segments with a mean of $1 \%$ of percentage difference between simulated and observed landing in the 7 years.

Comparison between observed yield values and values simulated by the ALADYM assessment are provided on Fig. 6.2.7-1.


Fig. 6.2.4-1. Simulated vs. observed yield for various fleet segments used in the assessment

### 6.2.5 Robustness analysis

### 6.2.6 Retrospective analysis, comparison between model runs, sensitivity analysis, etc.

### 6.2.7 Assessment quality

The assumptions used for the simulations tried to accommodate different selectivity of codend.
Furthermore, the hind-casting approach used for this assessment was accomplished to supporting the validity of the combined assessment.

## 7 Stock predictions

The recruitment has been assumed equal to geometric mean of the last three years in the projections, being lacking a reliable stock recruitment relationship.

Four different scenarios were assumed:

- Scenario 1 - "status quo" or no changes until 2021;
- Scenario 2 - Gradual reduction of $F$ towards $F_{0.1}$ in 2020;
- Scenario 3 - Increase in mesh size ( 60 mm diamond mesh size for Italy and Albania, 50 mm for Montenegro);
- Scenario 4 - Introduction of fishing ban in order to have at least one month for the different fleet segments.

All the management measures are applied since 2015; 2014 is assumed equal to 2013 (in recruitment, mortality and proportion of production due the fleet segments).

### 7.1 Short term predictions

### 7.2 Medium term predictions




Fig.7.2-1. Simulation of the four scenarios (status quo, increase of mesh size, introduction of the fishing ban and reaching target value of $\mathrm{F}_{0.1}$ by 2020) for the entire GSA18, and separately by fleet segments and country. Weights in tons.

For all scenarios except fishing ban and for all the fleet segments considered, the results show that the benefit of the strong recruitment in 2013 ( 714 millions of individuals) as well as the increase in mesh size of 2011 influences the landing until 2015.

Having a look to the landings of the different fleet segments, the results in medium term is similar to the total landing picture, with the best performances for catches given by the mesh size increase scenario.

On an overall basis, increasing the mesh size (to 60 mm diamond mesh size for Italy and Albania and 50 mm diamond mesh size for Montenegro) could lead to increased landings in the entire GSA (Fig. 7.2-1), under the assumption of total survival of all the escaped individuals from the codend.

The better effect to SSB is given instead by the scenario based on the gradual reduction of F towards F 0.1 in 2020 (Fig. 7.2-2).


Fig. 7.2-2. Prediction of the changes to the spawning stock biomass according to the four scenarios simulated in ALADYM analyses, 2014-2021. Weights in tons.

Table 7.2-1. Forecast of the percentage variations of the state of the spawning stock biomass in 2021 according to the scenarios analysed, expressed in respect to the "status quo".

| Scenario | Variation (\%) |
| :---: | :---: |
| Increase mesh size | 39 |
| Fishing ban $\mathbf{1}$ month | 6 |
| Fo.1 in $\mathbf{2 0 2 0}$ | 87 |

Moreover, under the assumption of total survival of all the escaped individuals from the codend, simulations showed that the mean carapax length of pink shrimp in landings would increase most significantly in all segments and in entire GSA 18 (Fig. 7.2-3).






Fig. 7.2-3. Mean carapax length of pink-shrimp (in mm) in landing by country and/or fleet segment according to the four simulated scenarios (status quo, increase of mesh size, introduction of the fishing ban and reaching target value of $\mathrm{F}_{0.1}$ by 2020) for GSA 18.

### 7.3 Long term predictions

## 8 Draft scientific advice

| Based on | Indicator | Analytic al reference point (name and value) | Current value from the analysis (name and value) | Empirical reference value (name and value) | Trend (time period) | Stock Status |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Fishing mortality | Fishing mortality | $\mathrm{F}_{0.1}=0.74$ | $\mathrm{F}_{\mathrm{c}}=1.6$ |  |  | OH |
|  | Fishing effort |  |  |  |  |  |
|  | Catch |  |  |  |  |  |
| Stock abundance | Biomass |  |  | Percentiles MEDITS biomass index ( $\mathrm{Kg} / \mathrm{km}^{\wedge} 2$ ): $33^{\text {rd }}: 4.2$ $66^{\text {th }}: 5.7$ <br> Current: 2.1 |  |  |
|  | SSB |  |  |  |  |  |
| Recruitmen |  |  |  |  |  |  |
| Final Diagnosis |  | The stock is in overexploitation ( $\mathrm{F}_{\text {curr }} / \mathrm{F}_{0.1}=2.16 \mathrm{XSA}$ ) with low level of biomass according to MEDITS survey data. |  |  |  |  |

The stock is in overexploitation as current fishing mortality exceed $\mathrm{F}_{0.1}$ levels ( 1.6 vs. 0.74 ) and thus it is necessary to consider a considerable reduction of the fishing mortality to allow the achievement of F0.1. The reference point F 0.1 can be gradually achieved by multiannual management plans that foresees a reduction of fishing mortality through fishing limitations. As observed in 2012, the contribution of each country to the total production of P. longirostris in the GSA18 is: Italy 67 \%; Albania 30\%; Montenegro 3\%.

### 8.1 Explanation of codes

## Trend categories

1) N - No trend
2) I-Increasing
3) D-Decreasing
4) C - Cyclic

## Stock Status

## Based on Fishing mortality related indicators

1) $\mathbf{N}$ - Not known or uncertain - Not much information is available to make a judgment;
2) $\mathbf{U}$ - undeveloped or new fishery - Believed to have a significant potential for expansion in total production;
3) $\mathbf{S}$ - Sustainable exploitation- fishing mortality or effort below an agreed fishing mortality or effort based Reference Point;
4) $\mathbf{I O}$-In Overfishing status- fishing mortality or effort above the value of the agreed fishing mortality or effort based Reference Point. An agreed range of overfishing levels is provided;

## Range of Overfishing levels based on fishery reference points

In order to assess the level of overfishing status when $\mathrm{F}_{0.1}$ from a $\mathrm{Y} / \mathrm{R}$ model is used as LRP, the following operational approach is proposed:

- If $\mathrm{Fc}^{*} / \mathrm{F}_{0.1}$ is below or equal to 1.33 the stock is in $\left(\mathrm{O}_{\mathrm{L}}\right)$ : Low overfishing
- If the $\mathrm{Fc} / \mathrm{F}_{0.1}$ is between 1.33 and 1.66 the stock is in $\left(\mathrm{O}_{\mathrm{O}}\right)$ : Intermediate overfishing
- If the $\mathrm{Fc} / \mathrm{F}_{0.1}$ is equal or above to 1.66 the stock is in $\left(\mathrm{O}_{\mathrm{H}}\right)$ : High overfishing
${ }^{*} \mathrm{Fc}$ is current level of F

5) C- Collapsed- no or very few catches;

## Based on Stock related indicators

1) $\mathbf{N}$ - Not known or uncertain: Not much information is available to make a judgment
2) $\mathbf{S}$ - Sustainably exploited: Standing stock above an agreed biomass based Reference Point;
3) O-Overexploited: Standing stock below the value of the agreed biomass based Reference Point. An agreed range of overexploited status is provided;

## Empirical Reference framework for the relative level of stock biomass index

- Relative low biomass: Values lower than or equal to $33^{\text {rd }}$ percentile of biomass index in the time series $\left(\mathbf{O}_{\mathrm{L}}\right)$
- Relative intermediate biomass: Values falling within this limit and $66^{\text {th }}$ percentile
( $\mathrm{O}_{1}$ )
- Relative high biomass: Values higher than the $66^{\text {th }}$ percentile $\left(O_{H}\right)$

4) D - Depleted: Standing stock is at lowest historical levels, irrespective of the amount of fishing effort exerted;
5) $\mathbf{R}$-Recovering: Biomass are increasing after having been depleted from a previous period;

## Agreed definitions as per SAC Glossary

Overfished (or overexploited) - A stock is considered to be overfished when its abundance is below an agreed biomass based reference target point, like B0.1 or BMSY. To apply this denomination, it should be assumed that the current state of the stock (in biomass) arises from the application of excessive fishing pressure in previous years. This classification is independent of the current level of fishing mortality.

Stock subjected to overfishing (or overexploitation) - A stock is subjected to overfishing if the fishing mortality applied to it exceeds the one it can sustainably stand, for a longer period. In other words, the current fishing mortality exceeds the fishing mortality that, if applied during a long period, under stable conditions, would lead the stock abundance to the reference point of the target abundance (either in terms of biomass or numbers).

## 9 References

Abella, A., Caddy, J.F., Serena, F., 1997 - Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius fishery in the Mediterranean. Aquat. Liv. Res. 10: 257-269.

FAO Fisheries and Aquaculture Department . 2013. Global Capture Fisheries Production Statistics for the year 2011 [online] ftp://ftp.fao.org/FI/news/GlobalCaptureProductionStatistics2011.pdf

Carlucci R., Lembo G., P. Maiorano, F. Capezzuto, A.M.C. Marano, L. Sion, M.T. Spedicato, N. Ungano, a. Tursi, G. D'Onghia. 2009 Nursery areas of red mullet (Mullus barbatus), hake (Merluccius merluccius) and deep-water rose shrimp (Parapenaeus longirostris) in the Eastern-Central Mediterranean Sea, Estuarine, Coastal and Shelf Science (2009), doi: 10.1016/j.ecss.2009.04.034

Cataudella S. \& Spagnolo M. (eds), 2011 - The state of Italian marine fisheries and aquaculture. Ministero delle Politiche Agricole, Alimentari e Forestali (MiPAAF), Rome (Italy), 620 p.

Lembo G., A. Abella, F. Fiorentino, S. Martino and M.-T. Spedicato. 2009 ALADYM: an age and lengthbased single species simulator for exploring alternative management strategies. Aquat. Living Resour. 22, 233-241.

