
Use of a Leslie matrix for the assessment of the exploitation status of *Raja asterias*, *Raja clavata*, *Scyliorhinus canicula* and *Galeus*

melastomus

A. Abella, C. Mancusi, F. Serena

ARPAT-Livorno, Italy GFCM Workshop on Stock Assessment of Selected Species of Elasmobranchs Brussels, 12-16 December 2011

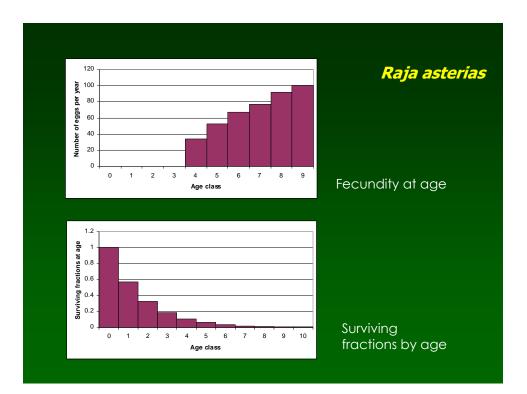
Life history

- Stock assessment needs of information on stocks and fisheries, and when we deal with elasmobranch species, often such information is lacking or is partial.
- The approaches based on life history traits can be used for modelling population dynamics in elasmobranchs (Hoenig and Gruber, 1990; Cortés, 1998, 2002; Smith et al, 1998; Simpfendorfer, 1999; Mollet and Cailliet, 2002).

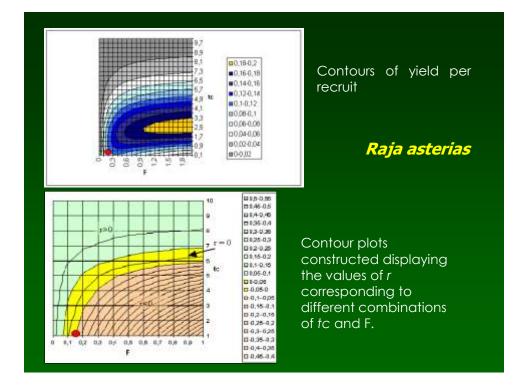
- A demographic analysis (Leslie matrix) that rely primarily on life history parameters was used for the definition of the status of the stock regarding its capacity of self-renewal
- Leslie matrices are based on the Euler-Lotka equation, and needs of the definition of the survival at age, fecundity at age (female pups per female), age at maturity, and maximum reproductive age.

The basic equation is the Euler-Lotka :

$$\sum_{t=0}^{w} l_t \times m_t \times e^{-rt} = 1$$


where *lt* is the proportion of animals surviving to the beginning of a given age class, *mt* the age specific natality, *w* is the maximum reproductive age, *t*=age and *r* is the intrinsic population growth rate

Life tables and Leslie matrices


- It allows estimating the finite or annual rate of change from the estimated values of *r*.
- the offspring number of an individual female belonging to a certain age
- the mean generation length (the average time that occur between the birth of a parent and the birth of their offspring):
- And other estimates as the time needed for the unexploited population for doubling its size and the stable proportion of each age *Pt* in the total demographic distribution of the population
- It is also possible to estimate the intrinsic capacity for increase despite of the particular condition of the environment *rm*

Information needed

- Fecundity at age
- Survival rates at age
- lifespan

CL -									
STOCK	assess	ment:	Raja aster	las					
Life hi	story to	able							
	,.								
	proportion	Female	Reproductive						
Age (t)	surviving	pups	rate					M=	0.561
	(l _t)	(m _t)	(l _{t+1} m _t)	l _{t+1} m _t t	e ^{-rt}	l _{t+1} m _t e ^{-rt}	i r	r=	0.2381
0	1	0	0	0	1	0			
1	0.570638	0	0	0	0.78813617	0			
2	0.325628	0	0	0	0.62115862	0			
3	0.185816	0	0	0	0.48955758	0			
4	0.106034			4.11446044	0.38583803	0.39687883			
5		27		4.57488996		0.27823832			
6		34		3.97206272	0.23966662	0.15866181			
7	0.019703			3.04575784					
8				2.36099452	0.14887099	0.04393545			
9					0.11733061	0.02147778			
10	0.003661	55			0.0924725	0.01862015			
			3.720248415	21.7292348		1.00	sommato	,	
			\mathbf{R}_{0}	5.84080212	0.22493322		MUST BE	=1	
			Net Reprod.rate	G	r _m	2.91135068			
				Generation		t _{x2}			
				lenght					

Leslie matrices

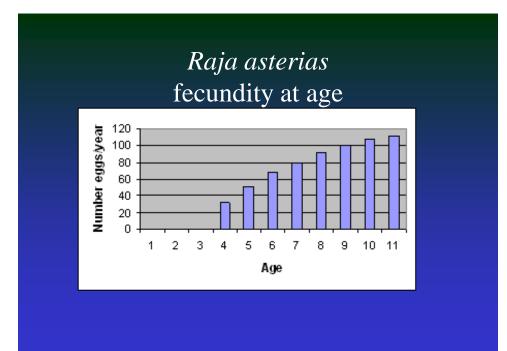
• In alternative to life tables, but obtaining almost identical results, age-structured matrix models as the Leslie matrices, are now frequently used in the assessment of shark populations. (i.e. Hoenig and Gruber,1990).

Data: fecundity and survivals at age

0	0	0	16	26	34	40	46	50	54	54
0.74	0	0	0	0	0	0	0	0	0	0
0	0.55	0	0	0	0	0	0	0	0	0
0	0	0.41	0	0	0	0	0	0	0	0
0	0	0	0.30	0	0	0	0	0	0	0
0	0	0	0	0.22	0	0	0	0	0	0
0	0	0	0	0	0.17	0	0	0	0	0
0	0	0	0	0	0	0.12	0	0	0	0
0	0	0	0	0	0	0	0.09	0	0	0
0	0	0	0	0	0	0	0	0.07	0	0
0	0	0	0	0	0	0	0	0	0.05	0

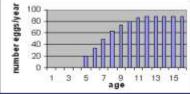
- The Leslie Matrix can be adapted to include information on fishing mortality at specific ages, or changes in the reproductive schedule
- In order to assess how much influence the changes in the used estimates of the vital rates fecundity at age and mortality rates have on the population growth rate, the software allows the performance of sensitivity analyses

- sensitivity analysis is here reported as the elasticity, which is the proportional (relative) change of sensitivity.
- This choice facilitates the comparisons related to the consequences (impact on the estimates of population growth rate) of small changes in fecundity and on the mortality rates, which are obviously expressed in different absolute scales

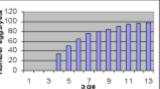

• Elasticity analysis allows defining the management choices likely to produce more benefits to the stock, by estimating how much vulnerable is the species to changes in the survival of the juveniles (or for the adults) depending on the characteristics of the species in question (small or large, slow or fastgrowing, long or short-lived species). The matrices were analyzed using Poptools, which is a versatile add-in for PC versions of Microsoft Excel that facilitates the analysis of matrix population models and simulation of stochastic processes. (http://www.cse.csiro.au/poptools/)

species

- The studied species are two rays *Raja* asterias and *Raja cla*vata, and two catsharks *Scyliorhinus canicula* and *Galeus melastomus*
- Which are the fisheries where the species are involved?


Raja asterias biological parameters

Sex	Fem	Mal
Growth model	VonBertalanffy	VonBertalanffy
Data source	Serena and Abella, 1999;	Serena and Abella, 1999;
L? (growth)	76	72,5
K (growth)	0,41	0,42
t0 (growth)	0	0
length-weight		
a (length-weight)	0,00192	0,00577
b (length-weight)	3,3216	3,0124
sex ratio	0,5	0,5
М	0,3	0,3


	Raja c	elavat	a
Raja clavata Sex	Fem	M a1	
L? (growth)	126,5	116,7	-
K (growth)	0,098	0,106	-
tO (growth)	-0,512	-0,412	
D ata source	Cannizzaro	, 2000	
length-weight			
a (length-weight)	0,00177	0,00358	
b (length-weight)	3,3076	3,1243	
sex ratio	0,5	0,5	
M	0,1568	0,1696	
		non suss	

Sex	both sexes
_? (growth)	64,00.00
< (growth)	0.15
D (growth)	0
Data source	Fishbase
ength-weight	
a (length-weight)	0.0026
b (length-weight)	0,15
sex ratio	0,5
M	0.2

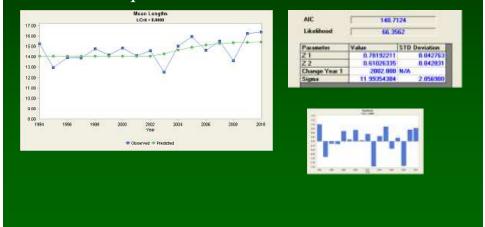
Scyliorhinus canicula

Sex	Fem	Mal	
L? (growth)	75,1	87,4	
K (growth)	0,15	0,118	
t0 (growth)	-0,96	-1,09	
Data source	Fishbase		
length-weight			
a (length-weight)	0,004	0,004	2 ¹²⁰
b (length-weight)	3,01	3,01	A 100
sex ratio	0,5	0,5	8 60 8 40
Μ	0,26	0,26	ad 20
			2 0 +

Estimates of <u>M</u>

• Use of all the information available, use of several empirical methods and literature

Estimates of fishing mortality


 For *Raja asterias*, a Length Converted Catch Curve was performed with commercial catch collected in the Viareggio Port. An estimate of Z=0.79 was obtained, that corresponds to a fishing mortality rate of *F*=0.49 assuming *M*=0.3

Estimates of fishing mortality

For the other species, total mortality was estimated with the Gedamke & Hoenig method. For *Raja clavata F* was estimated as 0.23 for the most recent years. In the case of *Galeus melastomus*, with the same method, the value of *F* for the last years was 0.37 and for *Scyliorhinus canicula* the estimate of *F* curr was of 0.33.

Gedamke & Hoenig method

• In this approach, the transitional behavior of the mean length statistic is derived for use in nonequilibrium conditions.

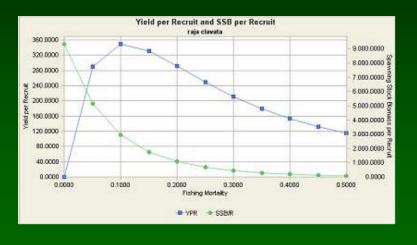
Raja asterias Y/R

Reference	Point	F	Yield per Recruit	SSB per Recruit	Total Biomass per Recruit	Hean Age	Hean Generation Time	Expected Spawnings
FZeio		0.00000	0.00000	3344.69319	4383.90780	3,35331	5.79522	1.44885
F-01		0.19970	320.07069	1258.27362	2035,15744	2,49209	5.02702	0.56290
F-Max		0.29040	334,87340	845.61546	1525.61450	2.23160	4,74363	0.38091
Fat 40:	2MSP	0.18620	314.37595	1337.98334	2130.68566	2.53680	5.07282	0.59767
Mi va F	Fairb	Vield our	Stuck	Stuck	Spawning	SSR ever	% Maximum	
F	Catch Numbers	Yield per Recruit	Stock Nunbers	Stock Weight	Stock Numbers	ISECIUK	Spawning Potential	Mean Age
F 0.00000	Numbers 0.00000	Recruit 0.00000	Numbers 3.74740	Weight 4383.90780	Stock Numbers 1.68333	Recruit 3344.69319	Spawning Potential	3.35331
F 0.00000 0.05000	Numbers 0.00000 0.14208	Recruit 0.00000 149.83676	Nunbers 3.74740 3.35355	Weight 4383.90780 3550.39581	Stock Numbers 1.68333 1.34466	Recruit 3344.69319 2590.26207	Spawning Potential 100.00000 77.14495	3.35331 3.09372
F 0.00000 0.05000 0.10000	Numbers 0.00000 0.14208 0.25155	Recruit 0.00000 149.83676 240.17750	Numbers 3.74740 3.35355 3.03792	Weight 4383.90780 3550.39581 2912.78269	Stock Numbers 1.68333 1.34466 1.08403	Recruit 3344.69319 2580.26207 2010.95928	Spewning Potential 100.00000 77.14496 60.12418	3.35331 3.09372 2.86518
0.00000 0.05000 0.10000 0.15000	Numbers 0.00000 0.14208 0.25155 0.33768	Recruit 0.00000 149.83676 240.17750 292.38897	Numbers 3.74740 3.35355 3.03792 2.78159	Weight 4383.90780 3550.39581 2912.78269 2419.35203	Stock Numbers 1.68333 1.34466 1.08403 0.88124	Recruit 3344.69319 2580.26207 2010.95928 1582.46794	Spewning Potential 100.00000 77.14496 60.12418 47.31280	3.35331 3.09372 2.86518 2.66529
F 0.00000 0.05000 0.10000	Numbers 0.00000 0.14208 0.25155	Recruit 0.00000 149.83676 240.17750 292.38897	Numbers 3.74740 3.35355 3.03792 2.78159	Weight 4383.90780 3550.39581 2912.78269	Stock Numbers 1.68333 1.34466 1.08403 0.88124	Recruit 3344.69319 2580.26207 2010.95928	Spewning Potential 100.00000 77.14496 60.12418	3.35331 3.09372 2.86518
F 0.00000 0.05000	Numbers 0.00000 0.14208	Recruit 0.00000 149.83676	Nunbers 3.74740 3.35355	Weight 4383.90780 3550.39581	Stock Numbers 1.68333 1.34466	Recruit 3344.69319 2590.26207	Spawning Potential 100.00000 77.14495	3.353

Raja asterias Y/R

Reference	Point	F	Yield per Recruit	SSB per Recruit	Total Biomass per Recruit	Hean Age	Hean Generation Time	Expected Spawnings
FZero		0.00000	0.00000	3344.69319	4383.90780	3,35331	5,79522	1.44885
F-01		0.19970	320.07069	1258.27362	2035, 15744	2,49209	5.02702	0.56290
F-Max		0.29040	334,87340	845.61546	1525.61450	2.23160	4,74363	0.38091
Fat 40:	2MSP	0.18620	314.37595	1337.98334	2130.68566	2.53680	5.07282	0.59767
PR vs F	Caleb	Vield and	Stark	Start	Spawning	ESB and	2 Maximum	
F	Catch Numbers	Yield per Recruit	Stock Numbers	Stock Weight	Stock Numbers	SSB per Recruit	Spawning Potential	Mean Age
F 0.00000	Numbers 0.00000	Recruit 0.00000	Numbers 3.74740	Weight 4383.90780	Stock Numbers 1.68333	Recruit 3344.69319	Spawning Potential	3.35331
F 0.00000 0.05000	Numbers 0.00000 0.14208	Recruit 0.00000 149.83676	Numbers 3.74740 3.35355	Weight 4383.90780 3550.39581	Stock Numbers 1.68333 1.34466	Recruit 3344.69319 2590.26207	Spawning Potential 100.00000 77.14495	3.35331 3.09372
F 0.00000 0.05000 0.10000	Numbers 0.00000 0.14208 0.25155	Recruit 0.00000 149.83676 240.17750	Numbers 3.74740 3.35355 3.03792	Weight 4383.90780 3550.39581 2912.78269	Stock Humbers 1.68333 1.34466 1.08403	Recruit 3344.69319 2580.26207 2010.95928	Spawning Potential 100.00000 77.14496 60.12418	3.35331 3.09372 2.86518
F 0.00000 0.05000 0.10000 0.15000	Numbers 0.00000 0.14208 0.25155 0.33768	Recruit 0.00000 149.83676 240.17750 292.38897	Numbers 3.74740 3.35355 3.03792 2.78159	Weight 4383.90780 3550.39581 2912.78269 2419.35203	Stock Numbers 1.68333 1.34466 1.08403 0.88124	Recruit 3344.69319 2580.26207 2010.96928 1582.46794	Spawning Potential 100.00000 77.14496 60.12418 47.31280	3.35331 3.09372 2.86518 2.66529
F 0.00000 0.05000 0.10000 0.15000 0.20000	Numbers 0.00000 0.14208 0.25155 0.33768 0.40580	Recruit 0.00000 149.83676 240.17750 292.38897 320.18420	Numbers 3.74740 3.35355 3.03792 2.78159 2.57079	Weight 4383.90780 3550.39581 2912.78269 2419.35203 2033.10253	Stock Numbers 1.68333 1.34466 1.08403 0.88124 0.72182	Recruit 3344, 69319 2580, 26207 2010, 96928 1582, 46794 1256, 56610	Spewring Potential 100.00000 77.14496 60.12418 47.31280 37.56895	3.35331 3.09372 2.86518 2.66529 2.49112
F 0.00000 0.05000 0.10000 0.15000	Numbers 0.00000 0.14208 0.25155 0.33768 0.40680 0.46326	Recruit 0.00000 149.83676 240.17750 292.38897	Numbers 3.74740 3.35355 3.03792 2.78159 2.57079	Weight 4383.90780 3550.39581 2912.78269 2419.35203	Stock Numbers 1.68333 1.34466 1.08403 0.88124 0.72182	Recruit 3344.69319 2580.26207 2010.96928 1582.46794	Spawning Potential 100.00000 77.14496 60.12418 47.31280	3.35331 3.09372 2.86518 2.66529

Raja asterias Y/R the current F=0.49 is much higher than the F0.1 estimated to be 0.2 and considered as a proxy of *F*MSY and also to Fmax(0.29) and the F40% MSP(0.186).


Raja clavata Y/R

Reference	Point	F	Yield per Recruit	SSB per Recruit	Total Biomass per Recruit	Mean Age	Mean Generation Time	Expected Spawnings
F Zero		0.00000	0.00000	9212,88939	0781.46175	5.91344	12,75948	2.33556
F-01	3	0.07640	332,14719	3779.21592	4881.57569	4.57134	11.58269	1.10466
F-Mas		0.10440	344 57438	2786.74104	3756 05490	4.20261	11.18094	0.85397
F at 40	EMSP	0.07060	334.21361	3688.31669	4779.50837	4.54027	11.55041	1.08222
PR vs F					Connection		2 Marinen	
	Catch Numbers	Yield per Recruit	Stock Numbers	Stock Weight	Spowning Stock Numberz	SS8 per Recnait	2 Maximum Spawning Potential	Hean Age
		Recruit	Numbers	Weight	Stock Numbers	Recruit	Spawning	Hean Age
F 0.00000 0.10000	Numbers	Recruit	Numbers	Weight 0781.46175	Stock Numbers	Recruit 9212 68939	Spawning Potential 100.00000 31.70807	
F 0.00000	Numbers 0.00000	Recruit	Numbers 6.48764 4.34370	Weight 0781.46175 3910.17737	Stock Numbers 2.53008 1.01213	Recruit 9212.68939 2921.22969	Spawning Potential	5.91344
F 0.00000 0.10000	Numbers 0.00000 0.38249	Recruit 0.00000 344.31881	Numbers 6.48764 4.34370	Weight 0781.46175 3910.17737	Stock Numbers 2.53008 1.01213	Recruit 9212.68939 2921.22969	Spawning Potential 100.00000 31.70807	5.91344 4.25685
0.00000 0.10000 0.20000	Numbers 0.00000 0.38249 0.55514	Recruit 0.00000 344.31891 286.32622	Numbers 6.48764 4.34370 3.30524	Weight 0781.46175 3910.17737 1704.75299	Stock Numberz 2.53008 1.01213 0.44773	Recruit 9212 68939 2921 22969 1065 36719	Spowning Potential 100.00000 31.70807 11.56388	5.91344 4.25685 3.29277
0.00000 0.10000 0.20000 0.30000	Numbers 0.00000 0.38249 0.55514 0.65211	Recruit 0.00000 344.31881 286.32622 208.12460	Numbers 6.48764 4.34370 3.30524 2.71184 2.33211	Weight 0781.46175 3910.17737 1704.75299 865.50105	Stock Numberz 2.53008 1.01213 0.44773 0.21184	Recruit 9212 88939 2921 22969 1065 36719 433 84187 191 55502	Spowning Potential 100.00000 31.70807 11.56368 4.70908	5.91344 4.25685 3.29277 2.71009

Raja clavata Y/R

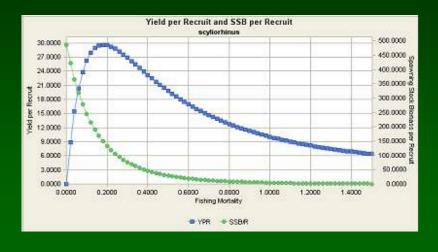
the current F=0.23 is much higher than the F0.1 estimated to be 0.076 and considered as a proxy of FMSY and also to Fmax(0.104) and the

F40%MSP	(0.	.08)
---------	-----	------

Galeus melastomus Y/R

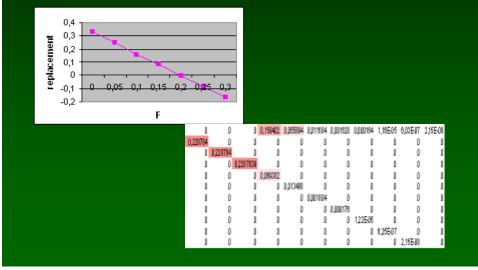
Reference	Point	F	Yield per Recruit	SSB per Recruit	Total Biomass per Recruit	Mean Age	Mean Generation Time	Expected Spawnings
FZero		0.00000	0.00000	340.31470	604.44943	4.73072	11.02156	1.12319
F-01		0.10910	25.05610	111.10031	275.50673	3.61412	10.50794	0.39962
F-Max		0.15160	26.68426	72.89776	210.33575	3.29614	10.32314	0.27143
Fat 40	2MSP	0.08880	24.34187	136.25406	315.60575	3.78689	10.59957	0.48213
PR vs F	Catch	Vield ner	Stock	Stock	Spawning	CCB par	% Maximum	
PR vs F F	Catch Numbers	Yield per Recruit	Stock Numbers	Stock Weight	Spawning Stock Numbers	SSB per Recruit	≵ Maximum Spawning Potential	Mean Age
PR vs F F 0.00000		Recruit		Maight	Stock		Spawning	Mean Age
F	Numbers	Recruit 0.00000	Numbers	Weight	Stock Numbers	Recruit	Spawning Potential	an a
F 0.00000	Numbers 0.00000	Recruit 0.00000 5.04405	Numbers 5.24200 5.05316 4.87701	Weight 604.44943	Stock Numbers 1.24132	Recruit 340.31470	Spawning Potential	4.73072
F 0.00000 0.01000	Numbers 0.00000 0.04558	Recruit 0.00000 5.04405 9.29929	Numbers 5.24200 5.05316	Weight 604.44943 559.22023	Stock Numbers 1.24132 1.13180	Recruit 340.31470 306.40271	Spawning Potential 100.00000 90.03511	4.73072 4.60703
F 0.00000 0.01000 0.02000 0.03000 0.03000 0.04000	Numbers 0.00000 0.04558 0.08756	Recruit 0.00000 5.04405 9.29929	Numbers 5.24200 5.05316 4.87701	Weight 604.44943 559.22023 517.90438	Stock Numbers 1.24132 1.13180 1.03253	Recruit 340.31470 306.40271 276.00468	Spawning Potential 100.00000 90.03511 81.10278	4.73072 4.60783 4.48934
F 0.00000 0.01000 0.02000 0.03000	Numbers 0.00000 0.04558 0.08756 0.12629	Recruit 0.00000 5.04405 9.29929 12.87344 15.85983	Numbers 5.24200 5.05316 4.87701 4.71247	Weight 604.44943 559.22023 517.90438 480.35270	Stock Numbers 1.24132 1.13180 1.03253 0.94248	Recruit 340,31470 306,40271 276,00468 248,74299	Spawning Potential 100.00000 90.03511 81.10278 73.09205	4.73072 4.60703 4.46934 4.37518

Galeus melastomus Y/R, the current fishing mortality rate F=0.37 is much higher than the F0.1 estimated to be 0.11 and considered as a proxy of FMSY and also to Fmax(0.15) and the F40%MSP(0.09). Yield per Recruit and SSB per Recruit galeur 27.0000 320.0000 24.0000 200.0000 21.0000 240,0000 18.0000 200.0000 15.0000 160.0000 12.0000 120.0000 3 9.0000 20.0000 8 6.0000 3.0000 40.0000 0.0000 0.0000 0.0000 0.2000 0.4000 0.6000 0.8000 1.0000 1.2000 1.4000 **Fishing Mortality** YPR SSBR

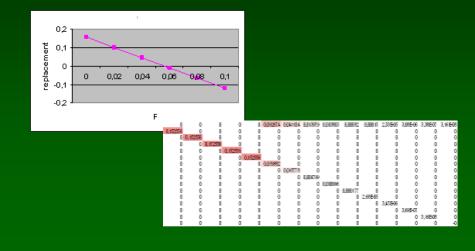

Scyliorhinus canicula Y/R

Reference	Point	F	Yield per Recruit	SSB per Recruit	Total Biomass per Recruit	Mean Age	Mean Generation Time	Expected Spawnings
F Zero		0.00000	0.00000	486.62787	577.17346	3.90958	7.81397	1.85654
F-01		0.13000	28.49316	202.19723	264,83026	3.01858	6.81609	0.93517
F-Max	1.1994 - L	0.18200	29.65595	147.36188	201.73770	2.76321	6.45587	0.72859
F at 40	EMSP	0.13600	28.77371	194,76157	256.36109	2.98661	6.77315	0.90805
PR va F	Catch	Vield ner	Stock	Stack	Spawning	558 nor	2 Maximum	
F	Catch Numbers	Yield per Recruit	Stock Numbers	Stock Weight	Stock Numbers	SSB per Recruit	Spawning Potential	Mean Age
	Numbers	Recruit	Numbers 4.21908	Weight 577.17346	Stock Numbers 2.11428	Recruit 486.62787	Spawning Potential	3.90958
F 0.00000 0.10000	Numbers 0.00000 0.27215	Recruit 0.00000 26.26929	Numbers 4,21908 3,28843	Weight 577.17346 312.95186	Stock Numbers 2.11428 1.30052	Recruit 486.62787 244.81436	Spawning Potential 100.00000 50.30833	3.90958 3.18929
F 0.00000 0.10000 0.29000	Numbers 0.00000 0.27215 0.42912	Recruit 0.00000 26.26929 29.55643	Numbers 4.21908 3.28843 2.72239	Weight 577.17346 312.95186 184.50558	Stock Numbers 2,11428 1.30052 0.84335	Recruit 486.62787 244.81436 132.64203	Spawning Potential 100.00000 50.30833 27.25739	3.90958 3.18929 2.68535
0.00000 0.10000 0.29000 0.30000	Numbers 0.00000 0.27215 0.42912 0.52997	Recruit 0.00000 26.26929 29.55643 26.89572	Numbers 4,21908 3,28843	Weight 577.17346 312.95186	Z 11428 1.30052 0.84335 0.56871	Recruit 486.62787 244.81436	Spawning Potential 100.06000 50.30833 27.25739 15.75269	3.90958 3.18929 2.60535 2.33168
F 0.00000 0.10000 0.29000 0.30000 0.40000	Numbers 0.00000 0.27215 0.42912 0.52997 0.60013	Recruit 0.00000 26.26929 29.55643 26.89572 23.20290	Numbers 4,21908 3,28843 2,72239 2,35064 2,09097	Weight 577.17346 312.95186 184.50558 117.21634 79.36460	Stock Numbers 2,11428 1,30052 0,84335 0,56871 0,39475	Recruit 486, 62787 244, 81436 132, 64203 76, 65700 46, 73723	Spawning Potential 100.00000 50.30833 27.25739 15.75269 9.60431	3.90958 3.18929 2.60535 2.33168 2.07763
F 0.00000 0.10000 0.29000 0.30000	Numbers 0.00000 0.27215 0.42912 0.52997	Recruit 0.00000 26.26929 29.55643 26.89572 23.20290	Numbers 4,21908 3,28843 2,72239 2,35064	Weight 577.17346 312.95186 184.50558 117.21634	Z 11428 1.30052 0.84335 0.56871	Recruit 486.62787 244.81436 132.64203 76.65700	Spawning Potential 100.06000 50.30833 27.25739 15.75269	3.90958 3.18929 2.60535 2.33168

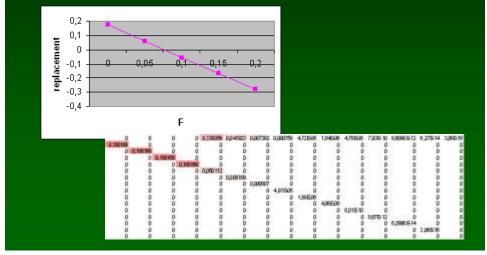
 $Scylior hinus\ canicula\ Y/R \quad \mbox{the current } F=0.33$


is much higher than the F0.1 estimated to be 0.13 and considered as a

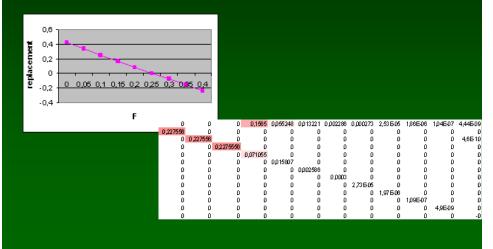
proxy of FMSY and also to Fmax(0.18) and the F40%MSP(0.14).


RESULTS OF DEMOGRAPHIC ANALYSIS

• Raja asterias replacement at different levels of F and elasticity analysis


RESULTS OF DEMOGRAPHIC ANALYSIS

• *Raja clavata replacement at different levels of F and elasticity analysis*


RESULTS OF DEMOGRAPHIC ANALYSIS

• Galeus melastomus replacement at different levels of F and elasticity analysis

RESULTS OF DEMOGRAPHIC ANALYSIS

• Scyliorhinus canicula replacement at different levels of F and elasticity analysis

• Raja asterias

The results of the demographic analysis suggest that the level of *F* (Fcurr=0.49) with the current exploitation pattern (tc<1) do not guarantee sustainability for the stock. A fishing mortality of about 0.2 can be considered the limit in order to guarantee the self-renewal fishing with the current pattern (Lc=<1yr).

R.asterias

• The higher values are found in the survival-at-age cells, suggesting that is in the first ages where smallest changes in vital rates are likely to produce biggest changes in the population growth rate. For this species the analysis suggests that management measures aimed at protecting juveniles (e.g., mesh size increase, nursery area closures) should provide greater benefits to the population than a strategy aimed at protecting adults

• *Raja clavata*. The results of the demographic analysis suggest that the level of *F* (Fcurr=0.23) with the current exploitation pattern (tc<1) do not guarantee sustainability for the stock. A fishing mortality of about 0.05 can be considered the limit in order to guarantee the self-renewal fishing with the current pattern (Lc=<1yr).

R.clavata

• The higher values are found in the survival-at-age cells, suggesting that is in the first ages where smallest changes in vital rates are likely to produce biggest changes in the population growth rate. For this species the analysis suggests that management measures aimed at protecting juveniles should provide greater benefits to the population than a strategy aimed at protecting adults.

- Galeus melastomus
- The demographic analysis show that the current level of *F* (Fcurr=0.37) combined with the current exploitation pattern (tc<1) do not guarantee sustainability for the stock. A fishing mortality of about 0.06 is considered the limit in order to guarantee the self-renewal if fishing with the current pattern (Lc=<1yr).

G.melastomus

• The higher values are found in the survival-at-age cells, suggesting that is in the first ages where smallest changes in vital rates are likely to produce biggest changes in the population growth rate. For this species the analysis suggests that management measures aimed at protecting juveniles should provide greater benefits to the population than a strategy aimed at protecting adults.

- Scyliorhinus canicula
- The results of the demographic analysis suggest that the level of *F* (Fcurr=0.33) with the current exploitation pattern (tc<1) do not guarantee sustainability for the stock. A fishing mortality of about 0.25 can be considered the limit in order to guarantee the self-renewal fishing with the current pattern (Lc=<1yr).

S.canicula

• The higher values are found in the survival-at-age cells, suggesting that is in the first ages where smallest changes in vital rates are likely to produce biggest changes in the population growth rate. For this species the analysis suggests that management measures aimed at protecting juveniles (e.g., mesh size increase, nursery area closures) should provide greater benefits to the population than a strategy aimed at protecting adults.

Conclusions

- The used approach allowed to modify the Leslie Matrix in order to include information on fishing mortality at specific ages, or simulate changes in the reproductive schedule.
- This was very useful for assessing whether the current levels of F of all the species combined with the current exploitation pattern are able to guarantee sustainability for the stocks.

Conclusions

- Elasticity allowed identifying the ages at which smallest changes in vital rates can produce biggest changes in the population growth rate
- elasticity analyses suggest for all the species that is in the first ages where smallest changes in vital rates are likely to produce biggest changes in the population growth rate
- *Y/R* analyses also show the relatively high current *F* values for all the stocks related to the RP F0.1 and suggest that a drastic reduction of *F* should be necessary in order to drive the stocks to more productive and sustainable status.

	F0.1	Frep	Fcurr
R.asterias	0.2	0.2	0.49
R.clavata	0.08	0.05	0.23
G.melastomus	0.11	0.06	0.37
S.canicula	0.13	0.25	0.33