SAC GFCM Sub-Committee on Stock Assessment

Date*	24	November	2009	Code*	NEP0509Gui				
Authors*			Guijarro, Beatriz; Valls, María; Ordines, Francesc and Massutí, Enric						
		Affiliation*	IEO- Centre Oceanogràfic de les Balears; Moll de Ponent s/n, 07015 Palma de Mallorca (Spain)						
Species Scientific name*			1 Nephrops norvegicus - NEP Source: GFCM Priority Species						
			2	Source: -					
			3	Source: -					
G	ieogra	phical area*	05 - 1	Balearic Islands					
Geog Combina		cal Sub-Area (GSA)* f GSAs 1 2 3	05 - Balearic Island						

Assessment form

Sheet #0

Basic data on the assessment

Code: NEP0509Gui

Date*	24 Nov 2009	Authors*	Guijarro, Beatriz; Valls, María; Ordines, Francesc and Massutí,
			Enric

Species	Nephrops norvegicus - NEP	Species	Norway Lobster
Scientific		common	
name*		name*	

Data Source

		2002 2008	
GSA*	05 - Balearic Island	Period of time* 2002-2006	
aon	05 - Balcare Island	i enou or time	ı

Description of the analysis

Livne of data*	Size composition of commercial trawl catches and official landings, CPUE	II)ata source^	IEO, Fishermen Association, Ministry of Fisheries and Regional Government
	data from bottom trawl survey and		
Method of assessment*	LCA- Pseudocohort analysis	Software used*	VIT programme (Lleonart and Salat, 1992)

Sheets filled out

В	P1	P2a	P2b	G	A 1	A2	A3	Υ	Other	D	Z	С
1	1	1	1		2	1	2	1		1	1	1

Comments, bibliography, etc.

- North-eastern Iberian Peninsula and Balearic Islands:

Sardà F. and J. Lleonart.- 1993. Evaluation of the Norway lobster (Nephrops norvegicus, L.) resource off the "Serola" bank off Barcelona (western Mediterranean). Scientia Marina, 57 (2-3): 191-197.

Merella P., F. Alemany, A. Carbonell and A. Quetglas.- 1998. Fishery and biology of Norway lobster (Decapoda: Nephropidae) in Mallorca (western Mediterranean). Journal of Natural History, 32: 1631-1640.

Sardà F.- 1998. Symptoms of overexploitation in the stock of the Norway lobster (Nephrops norvegicus) on the "Serola Bank" (Western Mediterranean Sea off Barcelona). Scientia Marina, 62 (3): 295-299.

Maynou F. and F. Sardà.- 2001. Influence of environmental factors on commercial trawl catches of Nephrops norvegicus. ICES Journal of Marine Science, 58: 1318-1325.

- European Mediterranean waters:

Abelló P., A. Abella, A. Adamidou, S. Jukic-Peladic, P. Maiorano and M. T. Spedicato.- 2002. Geographical patterns in abundance and population structure of Nephrops Norvegicus and Parapenaeus longirostris (Crustacea: Decapoda) along the European Mediterranean coasts. Scientia Marina, 66 (Suppl. 2): 125-141.

Comments, bibliography, etc. - European Mediterranean waters: Sardà F. (Editor).- 1998. Nephrops norvegicus: comparative biology and fishery in the Mediterranean Sea. Scientia Marina, 62 (Suppl. 1): 5-143. Sardà F., J. Lleonart and J.E. Cartes.- 1998. An analysis of the population dynamics of Nephrops norvegicus (L.) in the Mediterranean Sea. Scientia Marina, 62 (Suppl. 1): 135-143. - Other papers (methodological aspects): Abella A. and P. Righini.- 1998. Biological reference points for the management of Nephrops norvegicus stocks in the northern Tyrrhenian Sea. Journal of Natural History, 32: 1419-1430. Abella A., A. Belluscio, J. Bertrand, P.L. Carbonara, D. Giordano, M. Sbrana and A. Zamboni.-1999. Use of MEDITS trawl survey data and commercial fleet information for the assessment of some Mediterranean demersal resources. Aquatic Living Resources, 12 (3): 155-166. Morello E.B., C. Froglia and R.J.A. Atkinson.-2007. Underwater television as fishery-independent method for stock assessment of Norway lobster (Nephrops norvegicus) in the central Adriatic Sea (Italy). ICES Journal of Marine Science, 64: 1116–1123.

Assessment form

Sheet B

Biology of the species

Code: NEP0509Gui

Piology								
Biology Somatic magnitude measured (LH, LC, etc)*					Carapace length U		Units*	mm
	Sex	Fem	Mal	Both	Unsexed			
Maximum	size observed	65	80			Reproducti	on season	see comments
Size at first maturity			S	ee commen	ts	Reproducti	on areas	
Recruitme	nt size	18*	19*			Nursery are	eas	

Parameters used (state units and information sources)

				S	ex		
		Units	female	male	both	unsexed	
	L∞		67	86.8			
Growth model	K		0.15	0.1			
Growin moder	t0		-0.33	-0.3			
	Data source	Sardà et a	Sardà et al. (1998) for the Catalan Sea (GSA-06				
Length weight	a		0.552	0.479			
relationship	b		3.075	3.118			
					-		

M 0.29*** 0.21***

sex ratio (mal/fem)	****
---------------------	------

Comments

(*) Minimum size in catches

- Size at first maturity:

For the assessment we have considered data from Sardà et al. (1998): "The size at first maturity has been considered to span the sizes ranging from 21 to 30 mm CL, with an estimated increase of 10% in the proportion of mature individuals with each additional mm in CL."

Sardà F., J. Lleonart and J.E. Cartes.- 1998. An analysis of the population dynamics of Nephrops norvegicus (L.) in the Mediterranean Sea. Scientia Marina, 62 (Suppl. 1): 135-143.

Other information (females): 30-36**

- Reproductive season:

Ovarian maturation: maximum peaks in spring or at the beginning of summer**

Brooding period: summer and autumn peaks**

(**) Orsi-Relini L., A. Zamboni, F. Fiorentino and D. Massi.- 1998. Reproductive patterns in Norway lobster Nephrops norvegicus (L.), (Crustacea Decapoda Nephropidae) of different Mediterranean areas. Scientia Marina, 62 (Suppl. 1): 25-41.

Comments

(***): from Pauly's method (1980)						
Pauly D 1980. On the interrelationships between natural mortality, growth, parameters, and mean environmental temperature in 175 fish stocks. Journal du Conseil International pour l'Exploration de la Mer, 39 (2): 175-192.						
(****) Sex-ratio was estimated from length frequency distributions (see sheet P2a)						

Assessment form

Sheet P1

General information about the fishery

Code: NEP0509Gui

Data source*	IEO, Fishermen Association	on, Ministry of Fisheries and	Year (s)*	2002-2007
	Regional Government]	
			1	
			I	
Data aggregation figures between	on (by year, average n years, etc.)*	Average 2002-2008		

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ESP	05	E - Trawl (12-24 metres)	03 - Trawls	34 - Demersal slope species	NEP
Operational Unit 2						
Operational Unit 3						
Operational Unit 4						
Operational Unit 5						

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ESP 05 E 03 34 - NEP	37	Tons	9.4	See comments	Almost null	See comments	1065**
Total	37		9.4				

Comments

Norway lobster catches from the Balearic fleet comes exclusively from bottom trawl. Fleet and catch data correspond to average 2000-2008 from Mallorca island, represent around >75% of the Balearic Islands.

- (*) Total number of bottom trawlers
- (**) Estimated standardised effort in days (average 2000-2008; from Palmer et al., 2008): Four different fishing tactics (shallow shelf: SS; deep shelf: DS; upper slope: US; middle slope: MS) and their combinations.

US & US+SS & US+DS & US+MS = 1065 days

OTHER SPECIES CAUGHT on US (350-600 m): important by-catch of big Merluccius merluccius, Lepidorhombus spp., Lophius spp. and Micromesistius poutassou (Guijarro and Massutí 2006).

DISCARDS on US have been estimated up to 18% (autumn) 45% (spring) of captured biomass. They are mainly

Comments

- Elasmobranchs: Dipturus oxyrinchus, Scyliorhinus canicula and Galeus melastomus.
- Teleosts: Argentina sphyraena, Argyropelecus hemigymnus, Arnoglossus rueppelli, Bathysolea profundicola, Capros aper, Cetrolophus niger, Chauliodus sloani, Citharus linguatula, Conger conger, Epigonus telescopus, Epigonus denticulatus, Gadiculus argenteus, Hoplostethus mediterraneus, Lepidopus caudatus, Molva dypterigia , Myctophidae, Notacanthus bonapartei, Notolepis rissoi, Peristedion cataphractum, Stomias boa, Symphurus nigrescens, Synchiropus phaeton, Caelorinchus caelorinchus, Hymenocephalus italicus and Nezumia aequalis.
- Crustaceans: Macropipus tuberculatus, Munida spp., Paromola cuvieri, Pasiphaea sivado, Pasiphaea multidentata, Plesionika heterocarpus and Sergestes arcticus.
- Cephalopods: Bathypolypus sponsalis, Octopus salutii, Histioteuthis spp. and Sepietta oweniana.
- Others: Echinidae, Gryphus vitreus, Porifera and Salpidae.

Guiiarro R. and F. Massutí (2006) Selectivity of diamond- and square-mesh codends in the deenwater crustacean trawl

FISHERY: ANNUAL LANDINGS AND STANDARDIZED CPUES Nephrops norvegicus - Mallorca (1986-2008) Landings (t) North CPUE (kg/day) CPUE (kg/day) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec **BOTTOM TRAWL SURVEYS (MEDITS)** BALAR'01- MEDITS'08 Nephrops norvegicus 39.5 O

Assessment form

Sheet P2a Fishery by Operational Unit

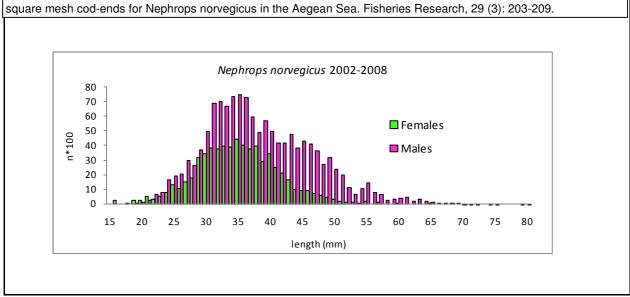
Code: NEP0509Gui

Page 1 / 1

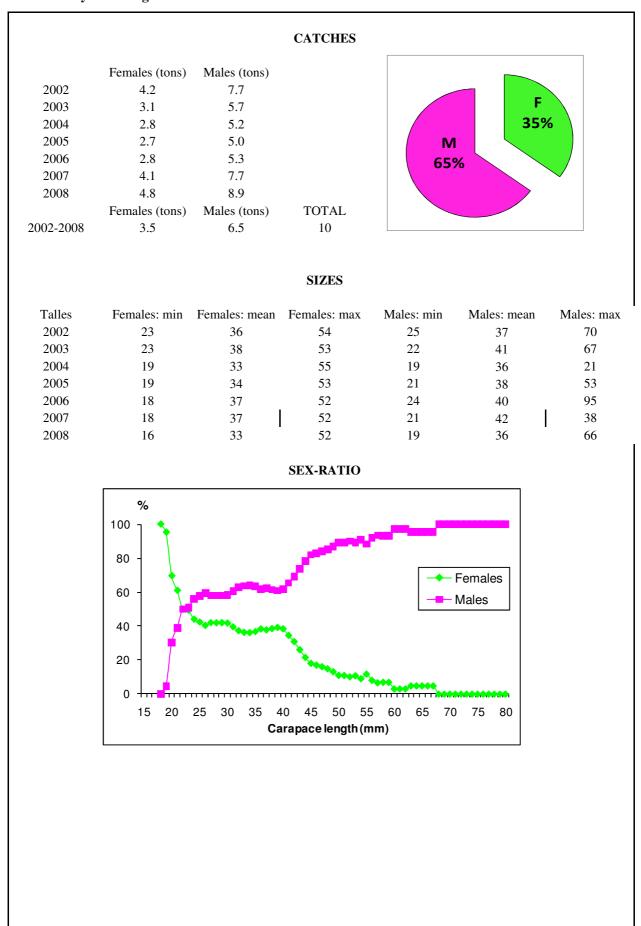
Data source*	source* Size composition of commercial trawl catches		ESP 05 E 03 34 - NEP
•	from monthly sampling on board		

Time series

Year*	2002	2003	2004	2005	2006	2007
Catch	11.87	8.84	8.07	7.66	8.13	11.83
Minimum size	23	22	19	19	18	21
Average size Lc	37	40	35	37	39	40
Maximum size	70	67	72	63	69	80
Fleet	27	27	26	22	31	31


Year	2008			
Catch	13.6			
Minimum size	16			
Average size Lc	34			
Maximum size	66			
Fleet	31			

Selectivity Remarks


L25	15.32	Mytilineou C., C.Y. Politou and A. Fourtouni 1998. Trawl selectivity
L50		studies on Nephrops norvegicus (L.) in the eastern Mediterranean Sea.
L75	20.34	Scientia Marina, 62 (Suppl. 1): 107-116.
Selection factor	0.44	

Structure by size or age

L50= 22.82 (Stergiou et al., 1997). Stergiou K.I., G. Petrakis and C.Y. Politou.- 1997. Size selectivity of diamond and square mesh cod-ends for Nephrops norvegicus in the Aegean Sea. Fisheries Research, 29 (3): 203-209.

Structure by size or age

Assessment form

Sheet P2b

Fishery by Operational Unit

Code: NEP0509Gui

Page 1 / 1

Data source* IEO, Fishermen Association, Ministry of Fisheries and OpUnit 1* ESP 05 E 03 34 - NEP

Regulations in force and degree of observance of regulations

- Fishing license: fully observed
- Engine power limited to 316 KW or 500 HP: not observed (at least, doubled)
- Mesh size in the codend (diamond 40 mm stretched): fully observed
- Fishing forbidden shallower than 50 m depth: not fully observed
- Time at sea (12 hours per day and 5 days per week): fully observed

Accompanying species

Since Guijarro and Massutí (2006):

- Teleosts: Merluccius merluccius, Micromesistius poutassou, Lepidorhombus boscii, Lepidorhombus whiffiagonis, Lophius budegassa, Lophius piscatorius, Argentina sphyraena, Chelidonichthys cuculus, Chlorophthalmus agassizi, Citharus linguatula, Mullus surmuletus, Pagellus acarne, Pagellus bogaraveo, Peristedion cataphractum, Scorpaena elongata, Trachurus trachurus and Trigla lyra.

Elasmobranchs: Raja clavata and Squalus acanthias.

Crustaceans: Palinurus mauritanicus, Paromola cuvieri, Plesionika giglioli and Plesionika. Cephalopods: Eledone cirrhosa, Scaergus unicirrhus, Illex coindetti, Sepia orbignyana and Todarodes sagitattus.

Guijarro B. and E. Massutí (2006) Selectivity of diamond- and square-mesh codends in the deepwater crustacean trawl fishery off the Balearic Islands (W Mediterranean). ICES Journal of Marine Science, 62: 52-67.

0004	A	C
SUSA	Assessment	POITIS

Assessment form

Sheet A1

Indirect methods: VPA, LCA

Analysis # *

Code: NEP0509Gui

Sex* F

Page 1 / 2

Time series

Data	Size	Age		Model	Cohorts	Pseudocohort
(mark with X)		X	(1	mark with X)		X

Equation used	Catch equation	Tunig method	
# of gears	1	Software	VIT programme (Lleonart and Salat, 1992)
F _{terminal}	0.36 (see comments)		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	12.1*	1	Recruitment	242.8	0.69
Average	24.9	2.9	Average population	737.2	12.3
Maximum		9+	Virgin population		19.5
Critical	32	4	Turnover		52.70%
					SSB: 7.0
				Thousands	Tons

Average mortality

			Gear				
	Total	Bottom trawl					
F ₁	0.244	0.244					
F ₂	0.106	0.106					
Z	0.534						

⁽F1 and F2 represent different possible calculations. Please state them)

Comments

- Terminal F was estimated from the FLEDA package (Jardim and Azevedo, 2007)
- (*) Lower size of first class. Mean length of first class (1.5 years of age): 15.8 mm CL.
- F1: mean F for all age classes (1-9+).
- F2: global F for all age classes (1-9+).

Jardim E. and M. Azevedo. - 2007. The "Exploratory Data Analysis for FLR" Package. Version 1.4-2.

Assessment form

Sheet A1

Indirect methods: VPA, LCA

Analysis # *

Code: NEP0509Gui

Sex* M

Page 2 / 2

Time series

Data	Size	Age	Model	Cohorts	Pseudocoho
ark with X)		X	(mark with X)		X

Equation used	Catch equation	Tunig method	
# of gears	1		VIT programme (Lleonart and Salat, 1992)
F _{terminal}	0.22 (see comments)		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	17.8	2	Recruitment	463.3	3.05
Average		4.4	Average population	1664	51.1
Maximum		9+	Virgin population		69.6
Critical	40.6	6	Turnover		35.90%
					SSB: 37.1
				Thousands	Tons

Average mortality

			Gear				
_	Total	Trawl					
F ₁	0.139	0.139					
F ₂	0.093	0.093					
Z	0.349						

⁽F1 and F2 represent different possible calculations. Please state them)

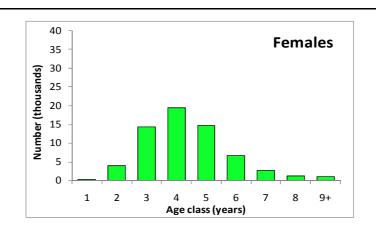
Comments

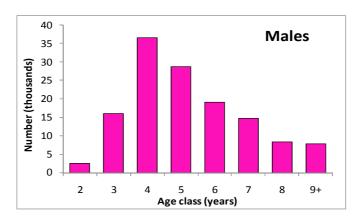
- Fterminal F was estimated from the FLEDA package (Jardim and Azevedo, 2007).
- (*) Lower size of first class. Mean length of first class (2.5 years of age): 21.1 mm CL.
- F1: mean F for all age classes (1-9+).
- F2: global F for all age classes (1-9+).

Jardim E. and M. Azevedo.- 2007. The "Exploratory Data Analysis for FLR" Package. Version 1.4-2.

Assessment form

Sheet A2


Indirect methods: data


Code: NEP0509Gui

Sex*	Both	Gear*	Bottom trawl	Analysis # *	1 & 2
------	------	-------	--------------	--------------	-------

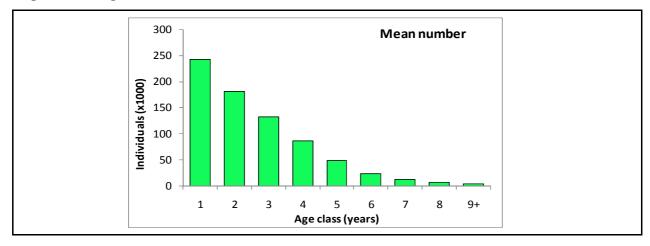
Data source Size composition of commercial trawl catches from monthly sampling on board

Data

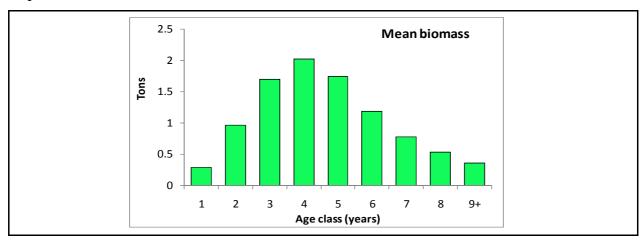
Biological parameters (growth, length-weight, maturity ogive and M) are explained in sheet B

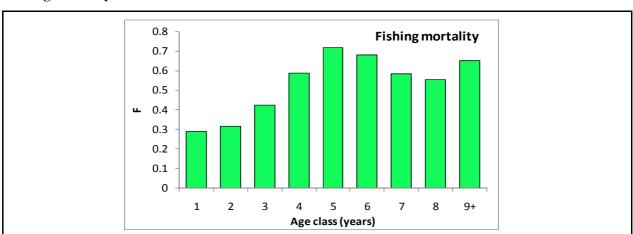
Assessment form

Indirect methods: VPA results


Code: NEP0509Gui

Page 1 / 2


Sheet A3


Population in figures

Population in biomass

Fishing mortality rates

Assessment form Indirect methods: VPA results

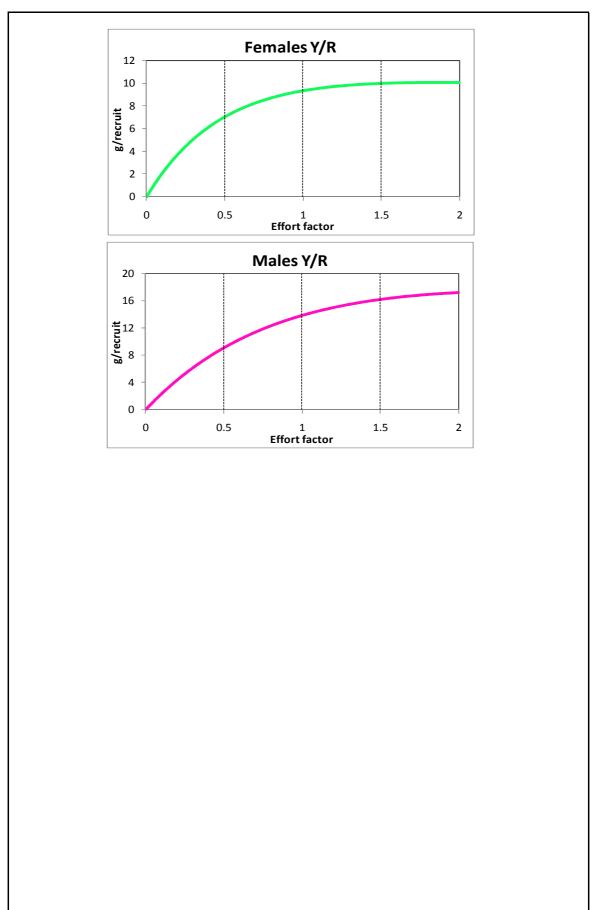
Code: NEP0509Gui

Sheet A3

					Page 2 / 2
Sex*	M	Gear*	Bottom tralw	Analysis #*	2

Population in figures

Population in biomass



Fishing mortality rates

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet Y **Assessment form** Indirect methods: Y/R Code: NEP0509Gui Sex F/M Analysis # 1 & 2 # of gears Software VIT programme (Lleonart and Salat, 1992) Parameters used Vector F From pseudocohort analysis Vector M See sheet B Vector N From pseudocohort analysis **Model characteristics** From calculated mean weights Results Gear Total Current YR 9.3 / 13.8 Maximum Y/R 10.1 / 17.2 Y/R 0.1 $\mathsf{F}_{\mathsf{max}}$ 1.9 / 2.0 Current B/R 39.3 / 92.7 27.6 / 63.4 Maximum B/R B/R 0.1 Females / Males **Comments**

Comments

Assessment form

Sheet D Diagnosis

Code: NEP0509Gui

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В					
SSB					
F					
Υ					
CPUE					

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

		? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
		U - Underexploited, undeveloped or new fishery . Believed to have a significant potential for expansion in total production;
		M - Moderately exploited , exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
ional	0	F - Fully exploited . The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
Unidimensiona		O - Overexploited . The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
ח		D - Depleted . Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
		R - Recovering . Catches are again increasing after having been depleted or a collapse from a previous;

	Exploitation rate			Stock abundance				
Bidimensional		No or low fishing		Virgin or high abundance		Depleted		
5	0	Moderate fishing		Intermediate abundance		Uncertain / Not		
		High fishing mortality		Low abundance		assessed		
5		Uncertain / Not assessed						

Comments

CURRENT ASSESSMENT

Although the species seems to be "moderately exploited" and we could "believe to have some limited potential for expansion in total production", we believe that it is not possible this expansion, because other species such as Merluccius merluccius, which shows symptoms of over-fishing, are also captured in the bottom trawl fishery on the upper slope.

OTHER ASSESSMENTS:

For comparison purposes, the assessment carried out by Sardà et al. (1998) at different areas of the Mediterranean and adjacent Atlantic, applying the same methodology, concluded:

- Highly (fully) exploitation in the Catalan Sea, Adriatic Sea and Thyrrehnian Sea.
- Moderate exploitation in the Ligurian Sea and Euboikos Gulf .
- Lightly exploitation in Alboran Sea and in the Algarve (Portugal, Atlantic).

Sardà F., J. Lleonart and J.E. Cartes.- 1998. An analysis of the population dynamics of Nephrops norvegicus (L.) in the Mediterranean Sea. Scientia Marina, 62 (Suppl. 1): 135-143.

Assessment form

Sheet Z Objectives and recommendations

Code: NEP0509Gui

Management advice and recommendations*

Not increase the fishing effort.
To apply the Council Regulation (EC) 1967/2006, in force, concerning management measures for the sustainable exploitation of fishery resources in the Mediterranean Sea, in relation to the replacement of 40 mm diamond mesh in the bottom trawl cod-end by 40 mm square mesh. It could reduce the high proportion of discards in the bottom trawl fishery developed on the upper slope and targeted to Nephrops norvegicus (from 18-45% to 10% with respect to biomass), reducing also the capture of undersized marketable species, without looses in the commercial yields and earnings (Guijarro and Massutí, 2006).
Guijarro B. and E. Massutí (2006) Selectivity of diamond- and square-mesh codends in the deepwater crustacean trawl fishery off the Balearic Islands (W Mediterranean). ICES Journal of Marine Science, 62: 52

Advice for scientific research*

framework of the Spanish Data Collection Programme, might allow the assessment of Nephrops norvegicus in the GSA-05. However, further studies will be needed to estimate biological	The monthly sampling on board bottom trawlers, developed in the Balearic Islands within the
norvegicus in the GSA-05. However, further studies will be needed to estimate biological	framework of the Spanish Data Collection Programme, might allow the assessment of Nephrops
parameters (e.g. growth, first maturity) required as input parameters in the models.	
	parameters (e.g. growth, first maturity) required as input parameters in the models.

Assessment form

Sheet C Comments

Code: NEP0509Gui

Page 1 / 1

Comments*

The monthly sampling on board bottom trawlers, developed in the Balearic Islands within the framework of the Spanish Data Collection Programme, might allow the assessment of Nephrops norvegicus in the GSA-05. However, further studies will be needed to estimate biological parameters (e.g. growth, first maturity) required as input parameters in the models.