SAC GFCM Sub-Committee on Stock Assessment

Date*	22	October	2009	Code*	HKE0309Sad
		Authors*	Sadia	BELCAID	
		Affiliation*		t National de Recher nal de Tanger	che Halieutique (INRH), Centre
Speci	es Scie	ntific name*	1 2	Merluccius merluccius source: GFCM Priority Source: -	
			3	Source: -	
	Geogra	phical area*	Mor	occan coast	
	ographic	cal Sub-Area (GSA)* f GSAs 1 2 3	03 -	Southern Alboran S	Sea

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet #0 **Assessment form** Basic data on the assessment Code: HKE0309Sad 2009 Date* 22 Oct Authors* Sadia BELCAID Merluccius merluccius - HKE European hake Species Species Scientific common name* name* **Data Source** 2008 GSA* Period of time* 03 - Southern Alboran Sea Description of the analysis INRH, ONP, DPM Length frequencies Type of data* Data source* LCA VIT (Lleonart and Salat, 1992) Method of Software used assessment*

Sheets filled out

В	P1	P2a	P2b	G	A 1	A2	A 3	Υ	Other	D	Z	С
1	1	1	1		1	1	1	1		1	1	

Comments, bibliography, etc.

The sample were collected on the trawlers fishery landing in the port of M'diq in 2008.
1

Comments, bibliography, etc.

Garcia Rodriguez and Esteban, 2002. How fast does hake grow? A study on the Mediterranean hak (Merluccius merluccius L.) comparing whole otoliths readings and length frequency distributions da Scientia marina, SCI. MAR., 66 (2): 145-156.	æ ta.
Sciental Harma, 501. 147 11., 60 (2). 143 136.	

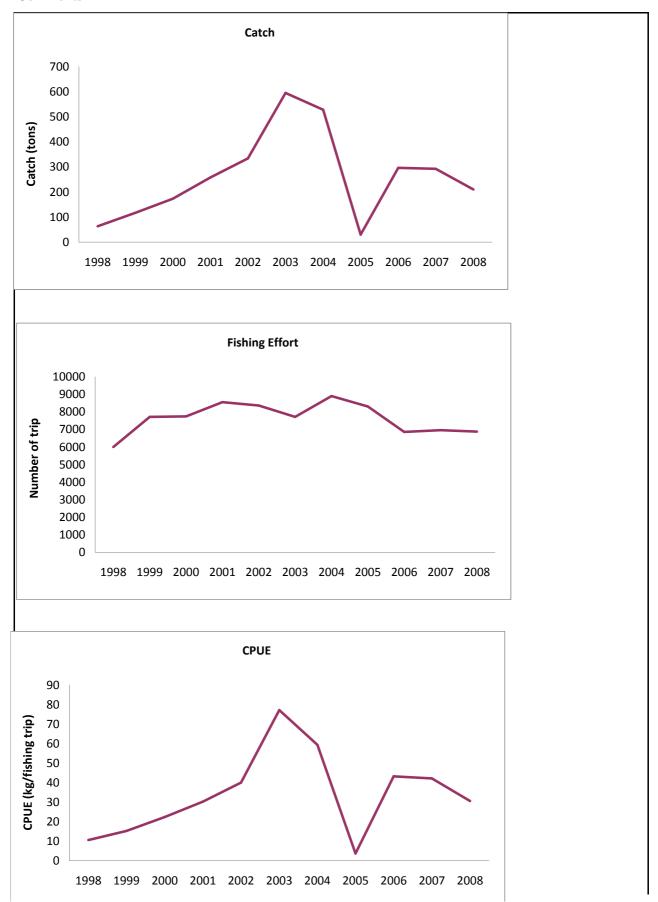
Assessment form

Sheet B

Biology of the species

Code: HKE0309Sad

Riolog	**7						
Biolog	Somatic magnit	tude measu	red (LH, LC	, etc)*	LT	Units*	cm
	Sex	Fem	Mal	Both	Unsexed		
Maximum size observed				53		Reproduction season	all year, summer
Size at first maturity				33		Reproduction areas	
Recruitment size						Nursery areas	


Parameters used (state units and information sources)

			106.8 0.2 0.0028 riguez and al, 2002 - Spain 0,72 10-5 2.994					
	Units	female	male	both	unsexed			
L∞	cm			106.8				
Units female male both L∞ cm 106.8 K an-1 0.2 t0 an 0.0028 Data source Garcia Rodriguez and al, 2002 - Spain a 0,72 10-	0.2							
t0	an			0.0028				
Data source	Garcia Ro	Rodriguez and al, 2002 - Spain						
а				0,72 10-5				
b				2.994				
		_						
M				0.5				
	K t0 Data source a b	L∞ cm K an-1 t0 an Data source Garcia Ro a b	L∞ cm K an-1 t0 an Data source Garcia Rodriguez an b	Units female male L∞ cm K an-1 t0 an Data source Garcia Rodriguez and al, 2002 a b	Units female male both L∞ cm 106.8 K an-1 0.2 t0 an 0.0028 Data source Garcia Rodriguez and al, 2002 - Spain a 0,72 10-5 b 2.994			

sex ratio (mal/fem)

Garcia rodriguez and Esteban, 2002. How fast does hake grow? A study on the Mediterranean hake
(Merluccius merluccius L.) comparing whole otoliths readings and length frequency distributions data*;
SCIENTIA MARINA, SCI. MAR., 66 (2): 145-156

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet P1 **Assessment form** General information about the fishery Code: HKE0309Sad Data source* INRH, ONP, DOM Year (s)* 2008 Data aggregation (by year, average by year figures between years, etc.)* Fleet and catches (please state units) Country **GSA** Fleet Segment Fishing Gear Class **Group of Target Species Species** 33 - Demersal shelf Operational MAR 03 03 - Trawls E - Trawl (12-24 metres) HKE Unit 1* species Operational Unit 2 Operational Unit 3 Operational Unit 4 Operational Unit 5 Fleet Discards Discards Catch Effort Other species Kilos or Operational Units* (n° of (species (species (other species Tons caught units assessed) caught) boats)* assessed) 210 ishing trip MAR 03 E 03 33 - HKE 114 Tons Total 114 210 Legal minimum size 20 **Comments**

Assessment form

Sheet P2a

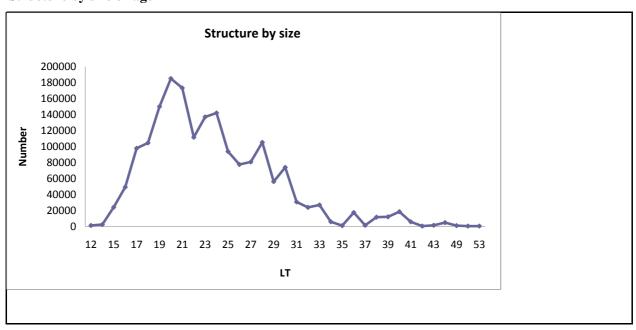
Fishery by Operational Unit

Code: HKE0309Sad

Page 1 / 1

Data source*	INRH, ONP, DPM	OpUnit 1*	MAR 03 E 03 33 - HKE

Time series


Year*	1998	1999	2000	2001	2002	2003
Catch	63	117	173	258	334	595
Minimum size						
Average size Lc						
Maximum size						
Fleet						

Year	2004	2005	2006	2007	2008	
Catch	528	30	296	293	210	
Minimum size					12	
Average size Lc					23.56	
Maximum size					53	
Fleet					114	

Selectivity Remarks

L25	
L50	
L75	
Selection factor	

Structure by size or age

Structure by size or age

ne sampling does not cover all size classes with the same frequency					

Assessment form

Sheet P2b

Fishery by Operational Unit

Code: HKE0309Sad

Page 1 / 1

Data source*

MINISTERY OF FISHERY AND AGRICULTURE

OpUnit 1*

MAR 03 E 03 33 - HKE

Regulations in force and degree of observance of regulations

Fishing licence: Fully observed
Trawl mesh size : ≥50 mm (mesh streched)
Minimum landing size = 20 cm
Interdiction of fishing under 80 m deep in the aerea between Tangier and Al Hoceima,
Interdiction of fishing under 3 miles in the area between Al Hoceima and Saidia.
,

Accompanying species

the deep water pink shrimp , pagellus acarne, Mullus spp, , Boops boops, Gadus poutassou,			
Octopus vulgaris and Sepia spp.			

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet G **Assessment form** Indirect methods. Global model Code: HKE0309Sad Analysis #* Page 1 / Data source' Gear* **Model characteristic** Type of model Fitting criterion Software Bibliographical source Data Year Catch Effort **CPUE** Year Catch Effort **CPUE** Adjustment RMS **Results** Carryng а capacity Growth rate Catchability MSY **TACMSY EMSY** TAC0.1 E0.1 Ecurrent **Comments**

Assessment form

Sheet A1

Indirect methods: VPA, LCA

Code: HKE0309Sad

Sex* both

Page 1 / 1

Time series

Analysis # * LCA

Data	Size	Age
(mark with X)	X	

Model	Cohorts	Pseudocohorts
(mark with X)		X

Equation used	Standard VPA	Tunig method	
# of gears	1	Software	VIT(Lleonard and smart, 1992)
F _{terminal}	0.5		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	12		Recruitment	258138505	
Average	23.56		Average population		973360445.3
Maximum	53		Virgin population		7281561791
Critical	22		Turnover		240.87

Average mortality

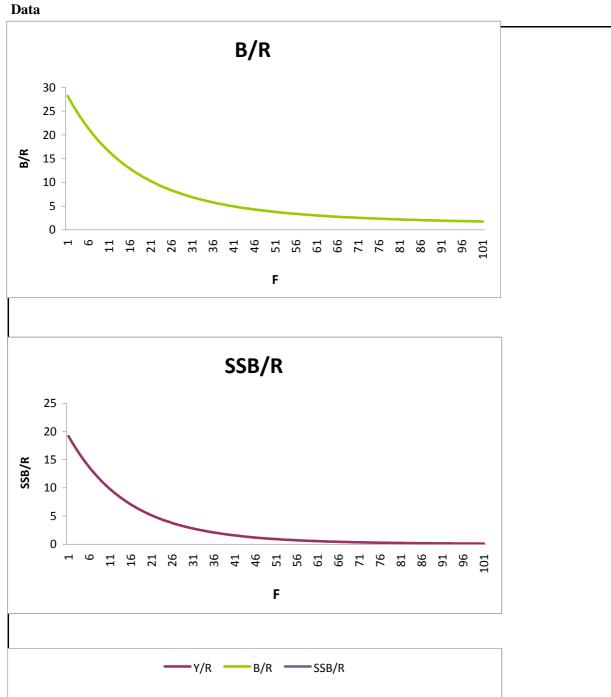
		Gear				
	Total					
F ₁	1.851	F1 = Mean F				
F ₂	1.237	F2 = Global F				
Z						

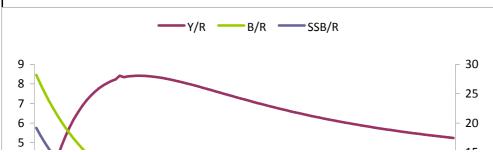
⁽F1 and F2 represent different possible calculations. Please state them)

	Biomass	Percentage
Recruitment	316412722,5	13,5
Growth	2028145842	86,5
Natural death	486680222,7	20,76
Fishing	1857878342	79,24
R/B(mean)	32,51	
D/B(mean)	240,87	
B(max)/B(mean)	87,45	
B(max)/D	36,3	

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet A1 **Assessment form** Indirect methods: VPA, LCA Code: HKE0309Sad Sex* Page 2 / 1 Analysis # * Time series Data Size Age Model Cohorts Pseudocohorts (mark with X) (mark with X) Equation used Tunig method # of gears Software $F_{terminal}$ **Population results (please state units)** Sizes Amount Biomass Ages Minimum Recruitment Average Average population Maximum Virgin population Critical Turnover **Average mortality** Gear Total (F1 and F2 represent different possible calculations. Please state them) **Comments**

Assessment form

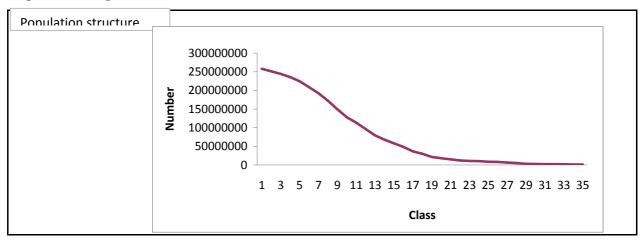

Sheet A2


Indirect methods: data

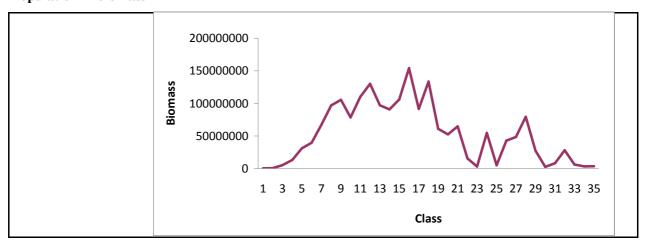
Code: HKE0309Sad

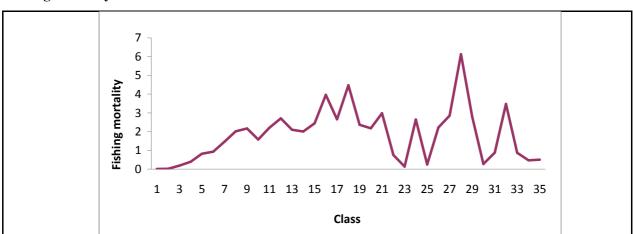
Sex* BOTH Gear* TRAWL Analysis # * VPA
--

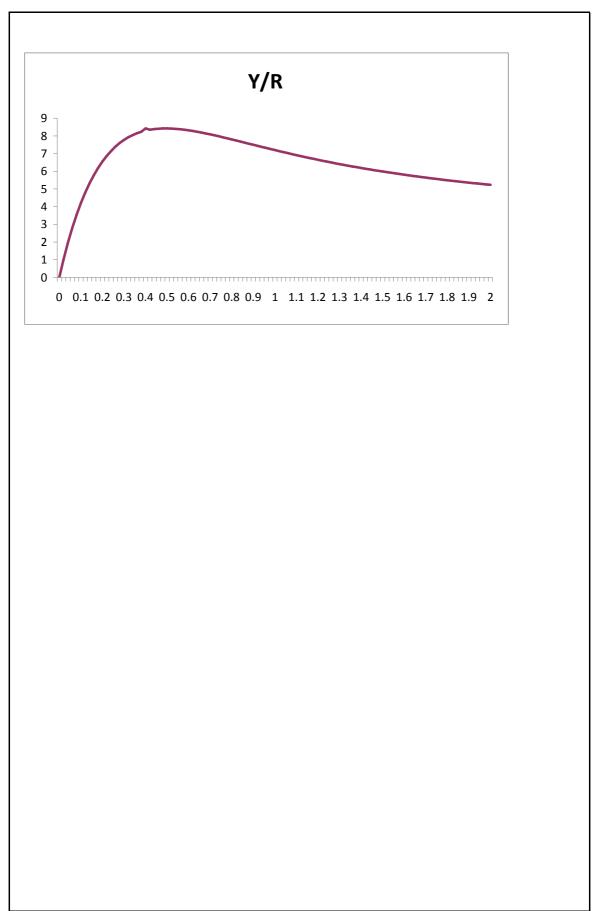
Data source Lenght frequencies, biological sampling


Assessment form Sheet A3
Indirect methods: VPA results

Code: HKE0309Sad


Page 1 / 1


Population in figures


Population in biomass

Fishing mortality rates

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet Y **Assessment form** Indirect methods: Y/R Code: HKE0309Sad Sex Both Analysis # Y/R # of gears TRAWL Software VIT (Lleonard and Salat, 1992) Parameters used 0,009;0,018;0,185;0,391;0,816;0,932;1,456;2,016;2,166;1,583;2,213;2,705;2,1;2,006;2,445;3 Vector F 0.5 Vector M Vector N **Model characteristics** Results Gear Total Current YR 7.197 Maximum Y/R 8.419 Y/R 0.1 8.419 0.5 F_{max} F_{0.1} 0.4 Current B/R 3.771 28.208 Maximum B/R B/R 0.1 10.281 **Comments**

Assessment form

Sheet D Diagnosis

Code: HKE0309Sad

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В	1E+09	Kg/day	T.		
SSB	0.897				
F	1.851		Fmax	0.5	
Υ			F0,1	0.4	
CPUE	31	Kg/day	T.		
		·			

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

		? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
		U - Underexploited, undeveloped or new fishery . Believed to have a significant potential for expansion in total production;
		M - Moderately exploited , exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
ional		F - Fully exploited . The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
Unidimensiona	O	O - Overexploited . The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
ר		D - Depleted . Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
		R - Recovering . Catches are again increasing after having been depleted or a collapse from a previous;

Virgin or high abundance Intermediate abundance Low abundance	Depleted Uncertain / Not assessed
	Intermediate abundance

The result of the model show that this stock is overexpoilted The expoitation is based on recruits

Assessment form

Sheet Z Objectives and recommendations

Code: HKE0309Sad

Management advice and recommendation	าร*
--------------------------------------	-----

It is recommanded to decrease the fishing mortality

Advice for scientific research*

Accomplish the biological study through landing longliners and trawlers sampling in order the estimate the biologic parameters for European hake in Moroccan coast;
Accomplish the stock assessment of this species exploited by longliners in Moroccan caost,
It is adviced to use the surveys data and run the software SURBA in order to compare the two results,
Under take survey regulary.