SAC GFCM Sub-Committee on Stock Assessment

Date*	27	November	2009	Code*	ARA0509Car				
		Authors*	Carbo	nell, A., Guijarro, B.,	Gaza, M., Valls, M., Ordines, F.				
		Affiliation*	Balear	•	ografía. Centro Oceanográfico de te s/n. 07015 Palma. Islas				
Species Scientific name*			1 Aristeus antennatus - ARA Source: GFCM Priority Species						
			3	Source: -					
(Geogra	phical area*	Wes	tern Mediterranean (l	FAO 37.1.1)				
Geo g		cal Sub-Area (GSA)* f GSAs 1 2	05 -	Balearic Island					
		3							

Assessment form

Sheet #0

Basic data on the assessment

Code: ARA0509Car

Date*	27 Nov 2009	Authors*	Carbonell,	, A.,	Guijarro,	В.,	Gaza,	M.,	Valls,	M.,	Ordines,	F.	

Species	Aristeus antennatus - ARA	Species	Red shrimp, Crevette rouge, Gamba roja
Scientific		common	
name*		name*	

Data Source

			1992-2008
GSA*	05 - Balearic Island	Period of time*	1332 2000

Description of the analysis

Type of data*	Monthly size distribution, and year-age classes. Daily landing bt vessel, and	II Jata Solirce"	Fishery Department local authorities and DCR data sampling IEO programme.
	monthly port landing		
Method of	LCA-Pseudochohort and Y/R, VPA-	Coftware used*	VIT (Lleonart and Salat, 1997)
assessment*	Separable Virtual Analysis and XSA-	Software used	VPA-XSA (Darby and Flatman, 1994)
	Extended Survivor Analysis		

Sheets filled out

В	P1	P2a	P2b	G	A 1	A2	A3	Υ	Other	D	Z	С
	1	1	1		1	1	1			1		

Comments, bibliography, etc.

Lleonart, J., and J. Salat. 1997. VIT: Software for fishery analysis--. User's manual FAO Computerized information Series (Fisheries) N° 11. Rome, FAO. 1997. 105 p.

Darby, C. and D. Flatman. 1994. Virtual Population Analysis: version 3.1. (Windows/Dos) user guide. Infor. Tech. Ser., MAFF Direct. Fish. Res., Lowestof (1):85 pp.

Carbonell, A., M. Carbonell, M. Demestre, A. Grau, S. Monserrat. 1999. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, Western Mediterranean. Fisheries Research 44.1-13.

Carbonell A, Azevedo, M. 2003. Application of non-equilibrium production models to the red shrimp (Aristeus antennatus, Risso 1816) fishery in the North-western Mediterranean.). Fisheries Research 65, 323-334.

Carbonell, A., A. Grau, V. Lauronce, C. Gómez. 2006. Ovary Development Of the Red Shrimp Aristeus antennatus from Northwestern Mediterranean Sea. Crustaceana 79(6).727-743 (2006).

Carbonell, A., Lloret, J., Demestre, M. 2007. Relationship between condition and recruitment success of the red shrimp (Aristeus antennatus) in the balearic sea (Northwestern Mediterranean). Journal of Marine Systems 71 (2008) 403-412.

Comments, bibliography, etc.

The assessment were based on analysis of long-term data (Aristeus catches in the Mallorca Island and from models (Lobtained from the Fishery Department of Autonomus Goverown sampling programmes (IEO sampling programmes from 1 programmes from 2003 to 2008) for biological data (Size dislenght-weight relationship, and natural mortality).	CA, Y/R, VPA and XSA). Dates were rn (landings and effort) and from the IEO 1992 to 2003, and DCR sampling

Assessment form

Sheet B

Biology of the species

Code: ARA0509Car

Riology						
Biology Somatic magnitude measured (LH, LC, etc)*					Units*	
Sex	Fem	Mal	Both	Unsexed		
Maximum size observed	66	38			Reproduction season	April-September
Size at first maturity	26	22			Reproduction areas	GSA 5
Recruitment size	13-22	Oct-18			Nursery areas	GSA 5

Parameters used (state units and information sources)

			Sex					
		Units	female	male	both	unsexed		
Growth model	L∞	mm	75.5	42				
	K	mm/month	0.249	0.422				
	t0		-0.3936	-0.65				
	Data source	Carbonell	Carbonell et al., 1999					
Length weight	а		0.00244	0.00246				
relationship	b		2.4536	2.4311				
						·		
	M		0.363	0.517				

sex ratio (mal/fem) 30/70

Comments

Aristeus present different growth and sexual maturity for females and males. The majority of landings are females dominated The results of the assessment by sex are difficult to apply for management purposes. In 2005 (SCSA 2005) we presented a comparison with the summation of the assessment made by sex and the analysis of sex combined assessment, results showed no major differences in the estimates of recruitment, fishing mortaliy, and stock biomass, therefore the assessment of Aristeus were carried out by sex combined from it.

Assessment form

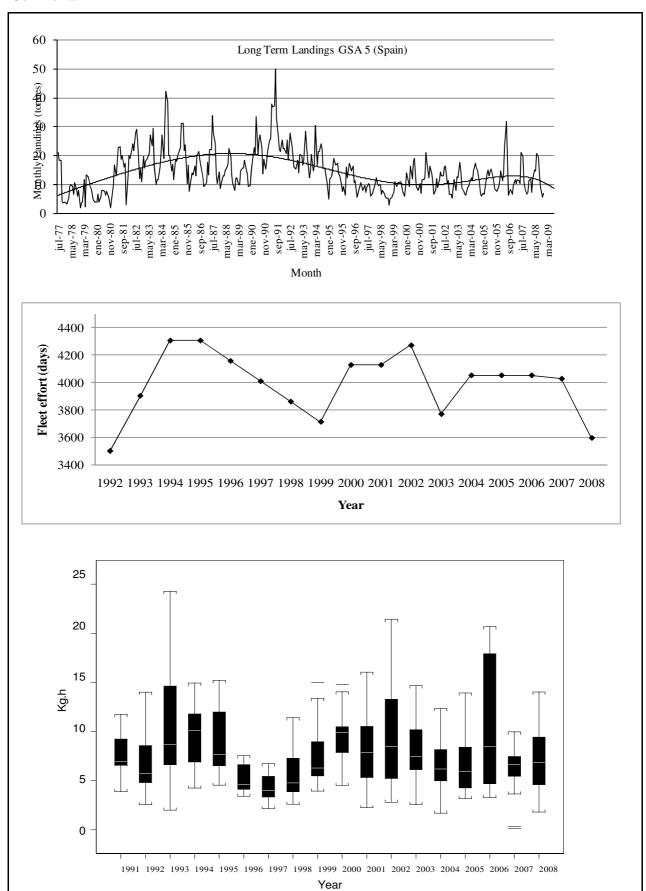
Sheet P1

General information about the fishery

Code: ARA0509Car

Data source*	Govern Autonomus Balear	ric Islands, Fishery Department	Year (s)*	1992-2008
Data aggregation figures between	on (by year, average n years, etc.)*	Annual agregation by year, and av	erage of all years	

Fleet and catches (please state units)


	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ESP	05	E - Trawl (12-24 metres)	03 - Trawls	34 - Demersal slope species	ARA
Operational Unit 2						
Operational Unit 3						
Operational Unit 4						
Operational Unit 5						

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ESP 05 E 03 34 - ARA	34	Tons	148.94		0.00%	30%	Days
Total	34		148.94		0.00001	0.3	

Comments

The number of vessels was reduced from the initial census in 1992, which for the slope fleet was estimated in 49 trawl vessels, while the Fishing fleet census in 2008 was 34 trawl vessels, for the whole GSA 5 area. Annual landings in the Mallorca Island in nineties (1992-1999) were around 200 tonnes and were produced by a total effort of between 3500-4400 fishing days*vessel (number of days*vessel). From 2000 years landing arise around 150 tonnes and total effort between 3200-4200 fishing days.

Comments

Assessment form

Sheet P2a

Fishery by Operational Unit

Code: ARA0509Car

Page 1 / 1

Data source*	source* Autonomus Govern. Fishing statistics		ESP 05 E 03 34 - ARA
-			

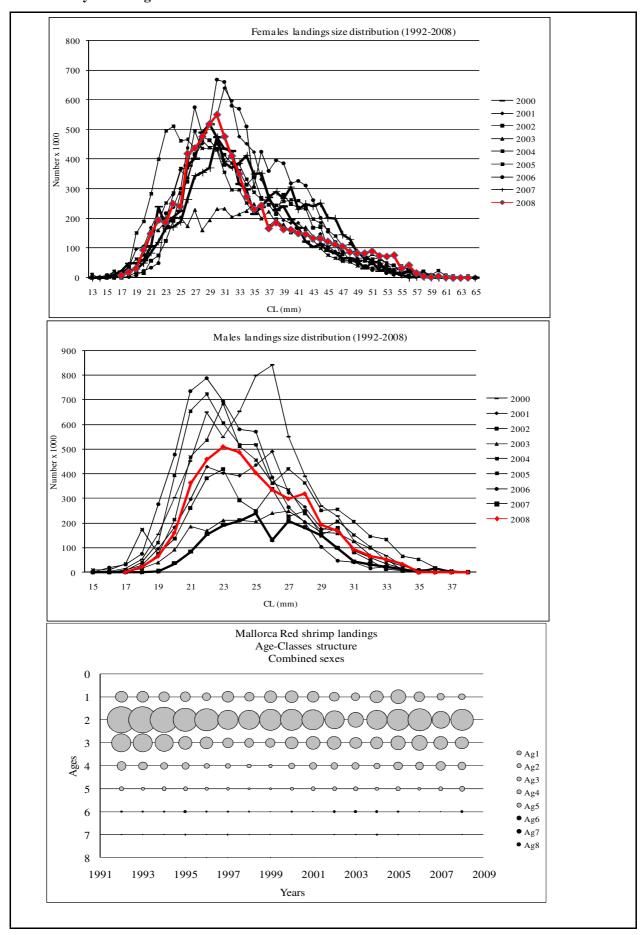
Time series

Year*	1997	1998	1999	2000	2001	2002
Catch	143	103	93	100	145	141
Minimum size	17	16	15	15	15	17
Average size Lc	28.3	28.48	27.25	29.02	30.13	31.34
Maximum size	64	64	65	63	65	61
Fleet	24	22	22	22	23	20

Year	2003	2004	2005	2006	2007	2008
Catch	115	140	172	164	141	149
Minimum size	15	13	15	17	15	17
Average size Lc	31.98	29.05	29.49	30.57	33.1	33.31
Maximum size	64	64	62	62	58	64
Fleet	24	16	16	16	16	17

Selectivity Remarks

L25	20.1
L50	22.1
L75	24.1
Selection factor	


Structure by size or age

Size structure remain quite stable. The whole trawl fleet can potentially fishing in the slope, although the number of vessels fishing at the same time in the slope use be between 50 and 75% of the total fleet.

Summary of assessment carried out by the red shrimp in the GSA 5

	Females	Males	Sum of sex	Combined
LCA (Length	X	X	X	
VPA (Age				X
XSA				X
Y/R	X	X		

Structure by size or age

Assessment form

Sheet P2b

Fishery by Operational Unit

Code: ARA0509Car

Page 1 / 1

Data source*

BOE (Boletín Oficial del Estado) and personal observa

OpUnit 1*

ESP 05 E 03 34 - ARA

Regulations in force and degree of observance of regulations

Fishing license: fully observed

Engine power limited to 500 HP: not fully observed Fishing forbidden at < 50 m depth: fully observed

Time at sea 5 days a week during 12 hours at sea: fully observed

EC Regulations:

The minimum mesh size of all bottom gear may not be less done 40 mm (EC Regulation 1967/2006). In addition trawling activity cannot be performed within 3 miles off the coast, where sea bed is less than 50 m depth.

Minimum landings sizes have been established for the most important commercial species, although there is not a minimum landing size for the red shrimp according to EC Regulation 1967/2006, which has replaced the previous EC Regulation 1626/94.

The use of towed dredges and trawl nets is at depth beyond 1000 m prohibited (EC Regulation 1967/2006) ational Regulations:

Effort regulations (APA/254/200) authorised trawls fishing 5 days a week during 12 hours at sea.

Accompanying species

- Red Shrimp bottom trawl main accompanying species are listed below:
- European hake (Merluccius merluccius)
- Black mouth catshark (Galeus melastomus)
- Pandalid shrimps (*Plesionika spp . Pasiphaea*)
- Giant red shrimp (Aristaeomorpha foliacea)
- Crabs (Macropipus tuberculatus, Geryon longipes)
- Megrims (Lepidorhombus spp.)
- Seabreams (*Pagellus acarne*)
- Siver scabbard fish (*Lepidopus caudatus*)
- Anglerfish (Lophius spp.)
- Blue-whiting (*Micromesistius poutassou*)
- Greater forkbeard (*Phycis blennoides*)
- Rockfish (Helicolenus dactylopterus)
- Conger eel (*Conger conger*)

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet G **Assessment form** Indirect methods. Global model Code: ARA0509Car Analysis #* Page 1 / Data source' Gear* **Model characteristic** Type of model Fitting criterion Software Bibliographical source Data Year Catch Effort **CPUE** Year Catch Effort **CPUE** Adjustment RMS **Results** Carryng а capacity Growth rate Catchability MSY **TACMSY EMSY** TAC0.1 E0.1 Ecurrent **Comments**

Assessment form

Sheet A1

LCA

Indirect methods: VPA, LCA

Analysis # *

Code: ARA0509Car

Sex* Both

Page 1 / 1

Time series

Cohorts	Pseudocohorts

Data	Size	Age
(mark with X)	X	

Model	Cohorts	Pseudocohorts
(mark with X)		X

Equation used	Capture	Tunig method	
# of gears	1	Software	VIT (Lleonart and Salat, 1997)
F _{terminal}	0.4		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	13	0	Recruitment	23286249.44	34.3 t
Average	33.72	2.067	Average population	28171296.99	211.18 t
Maximum	64	8	Virgin population		957.06 t
Critical	29	1.55	Turnover		102.54 t

Average mortality

		Gear					
	Total	Females	Males				
F ₁	Mean F	1.65	1.63				
F ₂	Global F	0.377	0.558				
Z							

⁽F1 and F2 represent different possible calculations. Please state them)

Comments

Minimum and Maximm sizes and ages are those observed in the landings. Average and critical values refer to the stock.

Total Biomass balance (D): 226764859.7 **Biomass** Percentage Recruitment 34313975.41 12.53 67.38 Growth 192450884.30 Natural death 81511910.69 35.95 **Fishing** 145252949.00 64.04

R/B(mean) 27.695 D/B(mean) 118.745 B(max)/B(mean) 55.12

B(max)/D 45.695

B/R SSB/R 5.050 15.441

Assessment form

Sheet A2

Indirect methods: data

Code: ARA0509Car

Sex* Sex Combined Gear* TRAWL	Analysis # * VPA, XSA
-------------------------------	-----------------------

Data source

Data

Quality of data and inputs: Length frequency data for landings are available on a monthly basis. It was run a single VPA of males and females combined, using VPA package. Effort series used in days is considered representative of the effort for the whole fleet, however must be considered as rough estimates of the effort, since the effort data and landings are estimated from the Mallorca Island where most of the fleet fish. The male and female length distributions for year (1992-2008) were split using L2Age, slincing ICES package to ages . The catch-at-age for the two sexes were then summed to combined input file for separable VPA and XSA. Catch weights-at-age were averages weighted by numbers -at-age for each sex. Tuning data series was made using the Palma harbour reference fleet. and BALAR_MEDITS Surveys

PARAMETERS	Females	Males	Total
Linf	75.5	42	75.7
K	0.249	0.422	0.285
to	-0.3936	-0.65	-0.45326
a	0.00244	0.00246	0.00242601
b	2.4536	2.4311	2.4701264
L50	26	21	21
M	0.363	0.517	0.517
Modal Age Cla	Females	Males	Total
Edades			
0	22.1	22	25.7
1	33.9	29.5	38.1
2	43.1	34.5	47.4
3	50.2	37.8	54.4
4	55.8		59.7
5	60.1		63.7
6	63.5		
GRUPO PLUS	6+	3+	5+

XSA: Setting used in the assessment -Males and females combined

GSA: Year range 1992-2008; Age range: 0-8; Classe plus 6+

TUNING FLEET: Palma port; Year range: 1992-2008; Age range: 0-8; Classe plues 6+ TUNING SURVEY: MEDIT_BALAR; Year range: 2001-2008; Age range: 0-8; Classe plus 6+

First age for normal catchability independ analysis: Age class 2 First age at which q is considered independent of age: Age class 3

Tape time weighting applied? YES, Tricubic over 20 years

F shrinkage: YES; YEAR RANGE = 5

Population shrinkage: YES

AGE RANGE = 3-6

Minimum Log SE for terminal population estimates: 1.0

Tuning had not converged after 30 iterations: Total absolute residuals between iterations 29

and 30 = 0.00043

Assessment form Sheet A3
Indirect methods: VPA results

Code: ARA0509Car

Page 1 / 1

Sex	* COMBI	Gear*	TRAWL	Analysis #*	VPAseparable; XSA

Population in figures

XSA RECRUITS AGE 0		VPA _{separable} RECRUIT	S Age 0
YEAR NUMBER	YEAR NUMBER	YEAR NUMBER	YEAR NUMBER
1992 37797	2000 26075	1992 36418	2000 25273
1993 30559	2001 20662	1993 29382	2001 20017
1994 24758	2002 18084	1994 23693	2002 17601
1995 22667	2003 24886	1995 21515	2003 24361
1996 16841	2004 32020	1996 15798	2004 32412
1997 20835	2005 29370	1997 19658	2005 32839
1998 25163	2006 21282	1998 24622	2006 27105
1999 28250	2007 22958	1999 27158	2007 35064
	2008 22041		2008 19119
Thousands			

Population in biomass

YEAR TB YEAR TB 1992 670 2000 426 1993 604 2001 425 1994 516 2002 383 1995 396 2003 361 1996 322 2004 427 1997 270 2005 484 1998 290 2006 462	/PAseparable:TOTAL BIOMASS Tones1992 645 /EAR TB
---	--

Fishing mortality rates

XSA : FBAR (0-5)		VPAseparable: FE	3AR (0-5)
1992 0.4372	2000 0.3883	1992 1.3508	2000 1.0685
1993 0.4201	2001 0.3861	1993 1.1438	2001 0.842
1994 0.4801	2002 0.4063	1994 1.094	2002 0.8245
1995 0.4509	2003 0.3698	1995 1.2587	2003 1.036
1996 0.4961	2004 0.3853	1996 1.0856	2004 0.9581
1997 0.4512	2005 0.4048	1997 1.2853	2005 1.8502
1998 0.3881	2006 0.3912	1998 1.1937	2006 1.1107
1999 0.3303	2007 0.3808	1999 0.5004	2007 0.7745
	2008 0.4049		2008 0.599

Assessment form

Sheet A3

Indirect methods: VPA results

Code: ARA0509Car

												Page 2 / 1
Sex*		Gear*						Analy	/sis #*			
CON		C.Ga.						7 11 1011	0.0 11			
Popula	tion in fi	gures										
1 Opula	11011 111 11	guits										
ļ												
Popula	tion in bi	iomacc										
1 opuia	tion in b	iomass										
Fiching	, mortali	ty rates										
r. raming	, moi tall	ij raies										
			Table		elative F	at		age				
			YEAR	1992	1993	1994	1995	1996	1997	1998	1999	2000
			AGE									
			0		0.082	0.0861	0.0806	0.0817	0.1274	0.088	0.2587	0.1865
1			1	0.7075	0.8372	1.2579	1.0256	1.3909	1.1484	1.2144	1.9811	1.1466

1.1213

1.3529

1.4301

1.3213

1.3213

1.0508

2001

2001

0.2112

1.3735

1.5608

1.4583

1.0255

0.3707

0.3707

0.5488

REFMEAN

YEAR

AGE

1.467

1.0383

1.3038

1.2717

1.2717

0.9475

2002

2002

0.1517

1.1396

1.5376

1.1363

1.2234

0.8114

0.8114

0.6295

1.5676

1.1084

0.8421

1.1379

1.1379

0.9013

2003

2003

0.0701

0.6595

1.244

1.4451

1.1842

1.397

1.397

0.733

1.1896

1.1189

1.2867

1.2986

1.2986

1.0527

2004

2004

0.1405

0.8562

1.079

1.0934

1.6474

1.1835

1.1835 0.718

1.5302

0.9964

0.8484

1.1523

1.1523

0.8992

2005

2005

0.1063

0.4589

0.7142

1.3893

1.9848

1.3464

1.3464

1.3423

1.1542

1.1085

1.2405

1.221

1.221

2006

2006

0.1007

0.8468

0.8559

1.1021

2.1147

0.9798

0.9798

0.9728

1.1929

0.9786

1.3267

1.1993

1.1993

0.7409

2007

2007

0.0465

0.6984

1.3528

1.3942

1.2808

1.2273

1.2273 0.7762

1.28

0.9433

0.694

0.8429

0.8429

0.3891

2008

0.0268

0.6847

0.6525

1.2382

1.7404

1.6574

1.6574

1.2439

2008 MEAN

1.2971

0.9897

1.2283

1.1518

1.1518

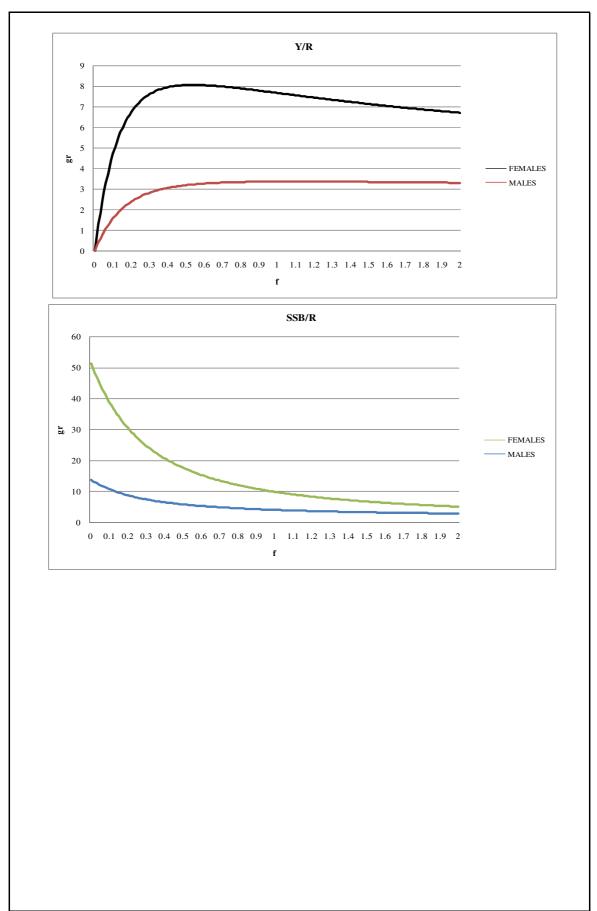
0.058

0.7433

0.9537

1.2448

1.712


1.2882

0.6496

0004	A	
SUSA	Assessment	POITIS

SA	C GFCM - Su	b-Com	mittee on Sto	ck Assessm	ent (SCSA)	
Assessment for	rm				Indirect met	Sheet Y hods: Y/R
					muncot mot	ilous. I/II
0.	1			Δ		RA0509Car
Sex	J			An	alysis #	
# of gears			Software			
Parameters use	d					
Vector F						
Vector M						
Vector N						
	l					
Model characte	rictics					
Widder characte	11511C5					1
Viola nor Boomit s		- for landi	hu ooy oogum	the current c	t-advatata avalai	tation.
			ngs by sex , assum			
			SB/R estimated the ng-term gains upon			
	urves the predicte	a Siliali loi	ig-term gams upon	a reduction of G	JITEHLF ALF _{0.1} WO	uia be
29% .						
Results						
Nesures				2		
	Total			Gear		
Current YR	5.65					
Maximum Y/R	5.7	†				
Y/R 0.1	5.4	1				
F _{max}	1.24	† <u> </u>				
F _{0.1}	0.57					
Current B/R	15.64					
Maximum B/R	14.614					
B/R 0.1	34.92			•		
		 				
Comments						

Comments

Assessment form

Sheet D Diagnosis

Code: ARA0509Car

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В	666				
SSB	572				
F	0.285				
Υ	5.65				
CPUE	39	Kg/day	Ī		

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

		? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
		U - Underexploited, undeveloped or new fishery . Believed to have a significant potential for expansion in total production;
		M - Moderately exploited , exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
ional		F - Fully exploited . The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
Unidimensiona	0	O - Overexploited . The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
ר		D - Depleted . Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
		R - Recovering . Catches are again increasing after having been depleted or a collapse from a previous;

		Exploitation rate	Stock abundance				
nal		No or low fishing		Virgin or high abundance		Depleted	
Bidimensional	0	Moderate fishing		Intermediate abundance		Uncertain / Not	
ner		High fishing mortality	0	Low abundance		assessed	
di di		Uncertain / Not assessed					

Comments

The XSA log catchability residuals are high for ages 0,1, 2. This can be explained by the ontongenic and biological behaviour of the species for the youngest age classe (Recruits of Age 0) only partially recruit to the fishery. However residuals for ages 1 and 2 can be explianed for some year effects. The log catchability residuals for the surveys time series (2001-2008) were lower than those of the fleet, but again they show year effects. The two tuning (fleet and survey) give similar estimates of survivors and have the similar weight in the F-at-age estimates. Total Biomass decreased from 700 tones (1992) to 270 tonnes (1997), from them fluctuated between 300 and 500 tonnes. The present stock is at lower biomass level compared to the beginning of the time series and compared to the last year, this year's assessment shows a slightly better picture.
assessment shows a sagnary sector picture.