SAC GFCM Sub-Committee on Stock Assessment

Date*	5	October	2009	Code*	ANE0609Tor			
		Authors*		, P1*, Giráldez, A.1, o, C.2, Alemany, F.3,	Bellido, J.M.2, Quintanilla, L.1, Iglesias, M.3			
		Affiliation*			nnografía. Centro Oceanográfico o S/N. 29640 Fuengirola. Málaga.			
Specie	es Scie	entific name*	1 Engraulis encrasicolus - ANE Source: GFCM Priority Species					
			2	Source: -				
			3	Source: -				
(Geogra	phical area*	West	tern Mediterranean (FAO Subarea 37.1.)			
Geo		cal Sub-Area (GSA)* f GSAs 1	06 -	Northern Spain				

Assessment form

Sheet #0

Basic data on the assessment

Code: ANE0609Tor

Date*	5 Oct 2009	Authors*	Torres, P1*, Giráldez, A.1, Bellido, J.M.2, Quintanilla, L.1, Ceruso,
			C.2, Alemany, F.3, Iglesias, M.3

Species	Engraulis encrasicolus - ANE	Species	Anchovy, Anchoa
Scientific		common	
name*		name*	

Data Source

		,	2002 2008
CCA*	06 Northarn Spain	Pariod of time*	2002-2008
GSA	00 - Normern Spani	renod of time	

Description of the analysis

	Lype of data*	Landings, Length and biological samplings. Tuning from Purse seiners	Data source [*]	Official Statistics, IEO Sampling Network, Acoustic Survey
- 1	Method of assessment*	XSA - Extended Survivor Analysis	Software used*	VPA Suite. Lowestoft. 1995

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Υ	Other	D	Z	С
1	1	1	1		1	1	1		1	1	1	1

Comments, bibliography, etc.

Fishery assessment by VPA methods of the Spanish anchovy stock GSA06 is reported. VPA Lowestoft software suite was used and XSA was the assessment method. A separable VPA was also run as exploratory analysis for both stocks. Stochastic short term projections were also produced.

Bibliography (Published papers and books):

Abella A., Caddy J.F., Serena F. (1997) Declining natural mortality with age and fisheries on juveniles: a Mediterranean demersal fishery yield paradigm illustrated for Merluccius merluccius. Aquatic Living Resources 10: 257–269.

Caddy, J.F. (1991). Death rates and time intervals: Is there an alternative to the constant natural mortality axiom? Rev. Fish Bio/. Fisheries, 1: 109-13 8.

De Oliveira, J.A.A., Uriante, A., and Roel, B., 2005. Potential improvements in the management of Bay of Biscay anchovy by incorporating environmental indices as recruitmen predictors. Fisheries Research, 75: 2-14.

Freon, P. and Misund, O.A., 1999. Dynamics of Pelagic Fish Distribution and Behaviour: Effects on Fisheries and Stock Assessment. Fishing News Books, UK, 348 pp.

Hilborn, R. and Walters C.J., 1992. quantitative Fisheries Stock Assessment; Choice, Dynamics and Uncertainty. New York: Chapman and Hall, 570 pp.

Lleonard, J. and Maynou, F., 2003. Fish Stock Assessment in the Mediterranean: state of the art. Scientia Marina, 67: 37-49.

Patterson, K., 1992. Fisheries for small pelagic species: an empirical approach to management targets. Review in Fish Biology and Fisheries, 2: 321-338.

Ramon M.M and Castro, J.A., 1997. Genetic variation in natural stocks of Sardina pilchardus (Sardines) from the western Mediterranean Sea. Heredity, 78: 520-528.

Sheperd, J.G., 1999. Extended Survivors Analysis: An improved method for the analysis of catch-atage data and abundance indices. Journal of Marine Science, 56: 584-591.

Bibliography (Technical Reports and grey literature):

Darby, C.D. and Flatman, S., 1994. Virtual Population Analysis, version 3.1 (Windows/DOS) user guide. Information Technology Series 1. CEFAS, Lowestoft, UK.

Reports from the SCSA and SAC of the General Fisheries Commission for the Mediterranean (GFCM), available at http://www.fao.org/fi/body/rfb/GFCM/gfcm_home.htm and/or ftp://cucafera.icm.csic.es/pub/scsa/

Reports from the Assessment Working Groups of the International Council for the Exploration of the Seas (ICES), particularly the small pelagics assessment working group WGMHSA. Available at www.ices.dk

Reports from the SGMED Working Groups on the Mediterranean of the Scientific, Technical and Economic Committee for Fisheries (STECF). Available at http://fishnet.jrc.it/web/stecf.

Assessment form

Sheet B

Biology of the species

Code: ANE0609Tor

Biology Somatic magnit									
		Somatic magnit	tude measu	red (LH, LC	, etc)*	Total Length		Units*	1/2 centimeter
		Sex	Fem	Mal	Both	Unsexed			
	Maximum s	size observed			18.5		Reproduction	on season	Spring-Summer
	Size at first	t maturity			11		Reproduction	on areas	Delta Ebro River
	Recruitmen	nt size					Nursery are	as	Rosas Bay and Delta

Parameters used (state units and information sources)

				S	ex	
		Units	female	male	both	unsexed
	L∞	cm			19	
Growth model	K	year-1			0.3419	
Growin moder	t0	year			-2.321	
	Data source	Otoliths				
Length weight	a				0.004	
relationship	b			·	3.1945	

M vector (see comments)

sex ratio (mal/fem) 42.4/57.6

Comments

Combined ALK 2003-2008, for all the years. Length Distributions 2002-2008, length distribution was applied to 2002 landings.

Biological sampling 2003-2008 for Maturity at age and Weight-Length relationships.

Natural Mortality value (M) - Following the recommendation from the Workshop on Mediterranean Stock Assessment Standardization (SG-ECA/RST/MED 09-01), a vector (declining value of M with age) instead of a constant value was used. The vector was estimated using the ProdBiom method (Abella et al., 1997) based on Caddy (1991).

Age	M
0	1.17
1	0.43
2	0.32
3	0.27

Assessment form

Sheet P1

General information about the fishery

Code: ANE0609Tor

Data source*	Official Statistics, IEO Sa	npling Network, Acoustic	Year (s)*	2002-2008
Data aggregati	on (by year, average	By year 2002-2008		
figures betwee	n years, etc.)*			

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ESP	06	G - Purse Seine (6-12 metres)	02 - Seine Nets	31 - Small gregarious pelagic	ANE
Operational Unit 2	ESP	06	H - Purse Seine (12-24 metres)	02 - Seine Nets	31 - Small gregarious pelagic	ANE
Operational Unit 3	ESP	06	F - Trawl (>24 metres)	02 - Seine Nets	31 - Small gregarious pelagic	ANE
Operational Unit 4						
Operational Unit 5						

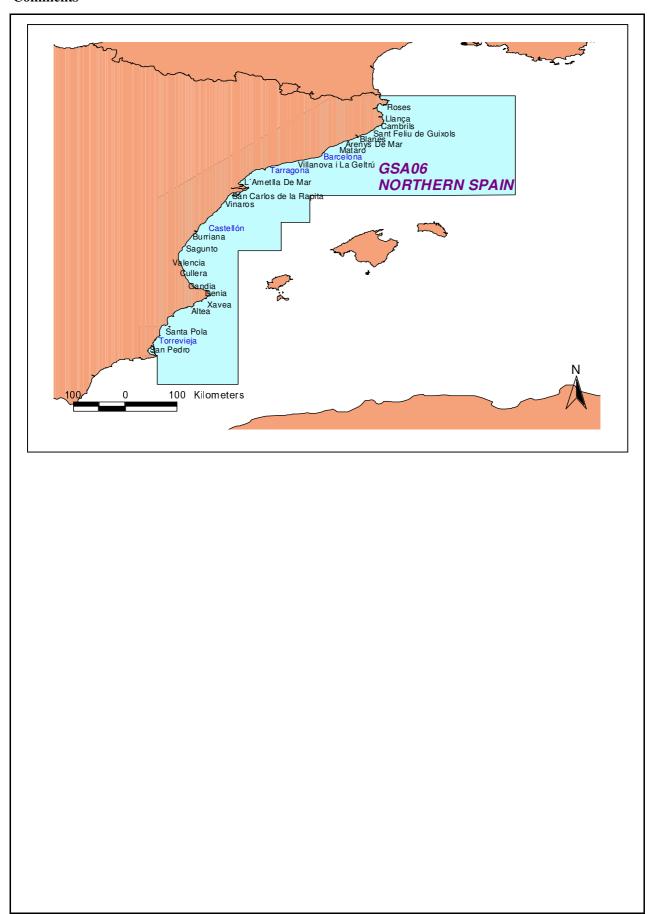
Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ESP 06 G 02 31 - ANE	5		2558				
ESP 06 H 02 31 - ANE	111	0					
ESP 06 F 02 31 - ANE	14	0					
Total	130		2558				

Legal minimum size	9 cm TL
Logar milliman sizo	J CHI I L

Comments

The catch (landings) is not split by Fleet segments. It comprises 2558 Tons in 2008 for the three Operational Units. Although landings are not still separated by Fleet segments we can provide a segmentation of the pelagic fleet in GSA06, with number of boats for every fleet segment:

The Fleet Segment Purse Seine (6-12 metres) comprises 5 boats in 2008


The Fleet Segment Purse Seine (12-24 metres) comprises 111 boats in 2008

The Fleet Segment Purse Seine (greater than 24 metres) comprises 14 boats in 2008

Then, and because that landing aggregation, we prefer to fill pages P2a and P2b considering the three fleet segments as an unique pelagic fleet. We aim to split landings by Fleet segment in a near future.

Landing Ports are shown in the attached Figure. Sampling ports are highlighted in blue. Tuning data from acoustic survey ECOMED.

Comments

Assessment form

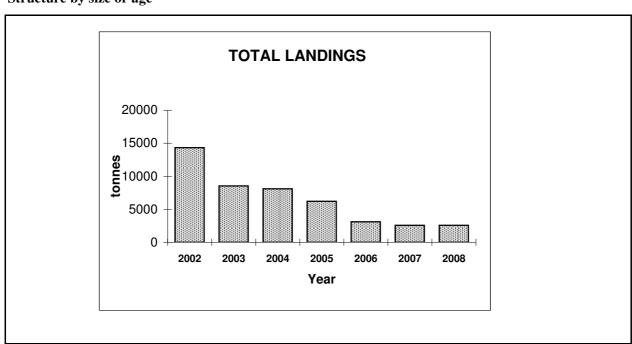
Sheet P2a **Fishery by Operational Unit**

Code: ANE0609Tor

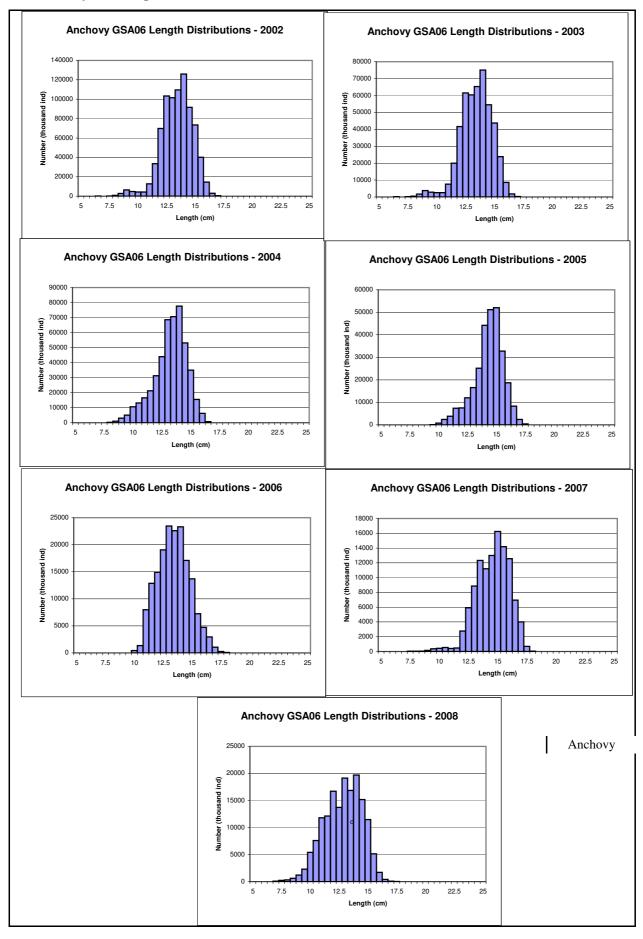
Page 1 / 3

ſ	Data source*	Official Statistics, IEO Sampling Network	OpUnit 1*	ESP 06 G 02 31 - ANE
		, 1 6		

Time series


Year*	2002	2003	2004	2005	2006	2007
Catch	14338	8538	8097	6216	3096	2570
Minimum size	6	6	7.5	7.5	10	7
Average size Lc	13.1	13.4	13.2	14.3	13.4	14.6
Maximum size	17.5	17.5	17	18	18.5	18
Fleet	157	161	155	147	139	132

Year	2008			
Catch	2558			
Minimum size	6			
Average size Lc	12.8			
Maximum size	18.5			
Fleet	132			


Selectivity Remarks

L25	
L50	
L75	
Selection factor	

Structure by size or age

Structure by size or age

Assessment form

Sheet P2a

Fishery by Operational Unit

Code: ANE0609Tor

Page 2 / 3

Data source*			OpUnit 2*	ESP 06 H 0	12 31 - ANE
Time series					
Year*					
Catch					
Minimum size					
Average size Lc					
Maximum size					
Fleet					
	1	Γ			
Year					
Catch					
Minimum size					
Average size Lc					
Maximum size					
Fleet					
Selectivity		Remarks			
L25					
L50					
L75					
Selection factor					
Structure by si	ze or age				
1					
					•

Assessment form

Sheet P2b

Fishery by Operational Unit

Code: ANE0609Tor

Page 1 / 1

Data source* Official Statistics, IEO Sampling Network OpUnit 1* ESP 06 G 02 31 - ANE

Regulations in force and degree of observance of regulations

Fishing license: fully observed Minimum landing size 9 cm: not fully observed (Some landings under minimum size in some specific ports).
No fishing allowed on weekend. Time at sea 12 hours per day and 5 days a week: fully observed Several technical measures regulations (gear and mesh size, engine, GRT, etc): not fully observed Two months temporary fishing closures: fully observed.

Accompanying species

The	moet	important are:	
1116	111051	IIIIDUITAIIL AI U .	

Sardine (Sardina pilchardus)

Mediterranean Horse Mackerel (*Trachurus mediterraneus*)

Other Horse Mackerels (Trachurus trachurus and Tachurus picturatus)

Mackerel (Scomber scombrus)

Chub Mackerel (Scomber japonicus)

Round sardinella (Sardinella aurita)

Bogue (Boops boops)

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) **Sheet G Assessment form** Indirect methods. Global model Code: ANE0609Tor Analysis #* Page 1 / Data source Gear' **Model characteristic** Type of model Fitting criterion Software Bibliographical source Data Year Catch Effort CPUE Year Catch Effort CPUE Adjustment RMS **Results** Carryng а capacity Growth rate b Catchability MSY **EMSY TACMSY** TAC0.1 E0.1 Ecurrent **Comments**

Assessment form

Sheet A1

Indirect methods: VPA, LCA

Analysis # *

Code: ANE0609Tor

Sex* Both

Page 1 / 1

XSA

Time series

Data	Size	Age
(mark with X)	X	X

Model	Cohorts	Pseudocohorts
(mark with X)	X	

Equation used	VPA	Tunig method	XSA
# of gears	Purse seiners	Software	VPA95. Lowestoft suite
F _{terminal}	Not relevant to XSA		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	6	0	Recruitment	837 millions	
Average	See page 2a		Average population	See coments be	elow
Maximum	18.5	3	Virgin population		
Critical			Turnover		

Average mortality

		Gear							
	Total								
F ₁	Fbar=1.13								
F ₂									
Z	See Comments								

⁽F1 and F2 represent different possible calculations. Please state them)

Comments

Reference F is Fbar0-2 (average of ages 0 to 2 are considered the reference ages of this fishery). Following the recommendation from the Workshop on Mediterranean Stock Assessment Standardization (SG-ECA/RST/MED 09-01), a vector instead of a constant value was used. The vector was estimated using the ProdBiom method (Abella et al., 1997) based on Caddy (1991).

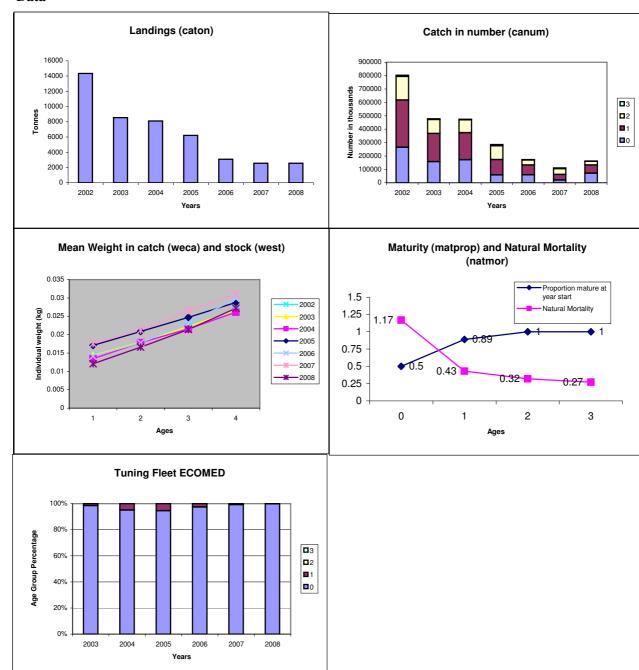
Separable VPA results show no unusual pattern of Log catchability residuals and no particular conflicts between ages. XSA main settings were Fbar 0-2; Age 1 for q stock-size independent and age 2 for q independent of age.

Landings decrease in 2008, reaching up 2558 t, which represents the lowest landings of the assessed time series (see Fig. 1). Fishing mortality is at a moderate-high level (F08=1.13), showing a rather plane pattern from 2002 onwards. Recruitment in 2008 (R08=837 millions) is double to 2007 (445 millions) following a little rising trend. The trend of the recruitments is so important as they can affect seriously to the stock health. Both Total Biomass (TB=13010 t) and Spawning Stock Biomass (SSB=7753 t) in 2008 are also next to the lowest of the time series.

See also figures in page VPA

Assessment form

Sheet A2


Indirect methods: data

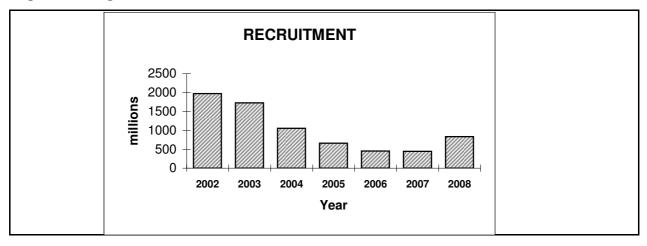
Code: ANE0609Tor

Sex*	Both	Gear*	Purse seiners	Analysis # *	XSA

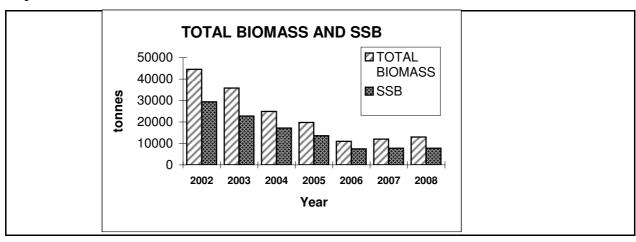
Data Input data for XSA

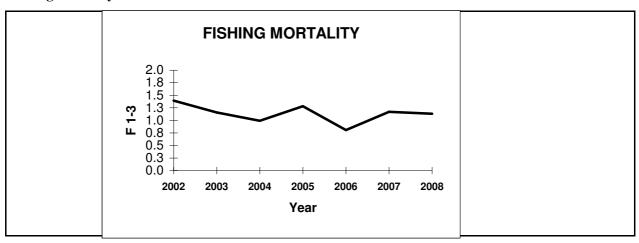
Data

Assessment form


Sheet A3 Indirect methods: VPA results

Code: ANE0609Tor


Page 1 / 1


Population in figures

Population in biomass

Fishing mortality rates

Assessment form

Sheet other

Code: ANE0609Tor

Page 1 / 1

Other assessment methods

Short Terms Deterministic Projections for three years (2009 to 2011).

MFDP software (Multi-Fleet Deterministic Projections).

Table bellow shows the management options from the short term catch prediction. Assuming statu quo F (Fbar06-08=1.04) and recruitment percentil 0.1 time series (RP02-08=449 millions). We realise this option is more conservative but the most realistic and robust as recruitment has been fluctuating. Landings are predicted to be close to 3,152 t in 2009 and 2,907 t in 2010. Total biomass will be 11,540 t in 2009 and 9,756 t in 2011, what account for a decrease on stock numbers. SSB will also decrease from 7,795 t to 6,223 t from 2009 to 2011.

Hence this exploitation pattern to maintain F statu quo 2009-11 will produce a lost and continuing the decreasing trend, observed during the last years.

In this situation it is particularly important to pay special attention to recruitment levels as they could prompt sudden increase or drops in a near future.

2009								
Biomass	SSB		FMult	FBar		Landings		
11540		7795		1	1.0374	3152		
2010							2011	
Biomass	SSB	- 1	FMult	FBar		Landings	Biomass	SSB
10402		6869		0	0	0	12385	8806
		6869	0.	1	0.1037	467	11933	8359
		6869	0.	2	0.2075	876	11546	7977
		6869	0.	3	0.3112	1236	11210	7646
		6869	0.	4	0.415	1555	10919	7359
		6869	0.	5	0.5187	1840	10663	7108
		6869	0.	6	0.6224	2095	10438	6888
		6869	0.	7	0.7262	2327	10239	6693
		6869	0.	8	0.8299	2537	10061	6519
		6869	0.	9	0.9336	2730	9901	6364
		6869		1	1.0374	2907	9756	6223
		6869	1.	1	1.1411	3070	9625	6096
		6869	1.1	2	1.2449	3223	9505	5981
		6869	1.3	3	1.3486	3365	9395	5875
		6869	1.	4	1.4523	3498	9294	5777
		6869	1.	5	1.5561	3623	9200	5687
		6869	1.	6	1.6598	3742	9113	5604
		6869	1.	7	1.7635	3854	9031	5526
		6869	1.5	8	1.8673	3960	8955	5453
		6869	1.5	9	1.971	4062	8883	5385
		6869		2	2.0748	4158	8816	5321

Assessment form

Sheet D Diagnosis

Code: ANE0609Tor

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В					Not Reference Point defined yet
SSB					Not Reference Point defined yet
F					Not Reference Point defined yet
Υ					Not Reference Point defined yet
CPUE					Not Reference Point defined yet

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

Unidimensional		? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
		U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in total production;
		M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
		F - Fully exploited. The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
	Θ	O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
		D - Depleted. Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
		R - Recovering. Catches are again increasing after having been depleted or a collapse from a previous;

		Exploitation rate	Stock abundance				
nal		No or low fishing		Virgin or high abundance		Depleted	
Bidimensional		Moderate fishing		Intermediate abundance	P-7	Uncertain / Not	
ner	0	High fishing mortality	0	Low abundance		assessed	
din		Uncertain / Not assessed	<u>-</u>				

Comments

No reference points for anchovy can be suggested at this point. Further research is aimed to produce Reference Points and Harvest Control Rules for the anchovy GSA06 fishery.

Assessment form

Sheet Z Objectives and recommendations

Code: ANE0609Tor

Management advice and recommendations*

Regarding suggestion for management options, this fishery is considered as overexploited. Although the exploitation rate (fishing mortality) is at a moderate level, the stock abundance in 2008 remains at low level (almost the lowest of the time series 2002-2008) and continues the decreasing trend apparent from teh beginning of the time series, from 14340 t in 2002 to 2560 t in 2008. Unless the
recruitment levels increase in the near future, this fishery will being exploited at above a level which is believed to be sustainable in the long term, with no potencial room for further expansion and a higher risk of stock depletion/collapse.

Advice for scientific research*

No reference points for anchovy can be suggested at this point. Further research is aimed to produce Reference Points and Harvest Control Rules for the anchovy GSA06 fishery.	

Assessment form

Sheet C Comments

Code: ANE0609Tor

Page 1 / 1

Comments*

Conclussions - Assessment:

Landings in 2008 were 2,558 t, showing a slight decrease from that of 2007 (2,570 t). The time series shows a decreasing trend and currently it is almost at the lowest point of the time series.

Fishing mortality is at a moderate-high level (F07=1.13), showing a rather plane pattern from 2002 onwards.

Recruitment in 2008 (R08=837 millions) increases from that of 2007 (445 millions). The trend of the recruitments is so important as they can affect seriously to the stock health.

Both Total Biomass in 2008 (TB=13,010 t) and Spawning Stock Biomass in 2008 (SSB=12,014 t) show a slight recovery, although both TB and SSB are still at a rather low level.

Conclusions – Catch Forecasting:

Assuming statu quo F (Fbar06-08=1.30) and conservative recruitment levels (RP02-08 = 449 millions):

- Landings are predicted to be close to 3,152 t in 2009 and 2,907 t in 2010.
- Total biomass will be 11,540 t in 2009, 10,402 t in 2010 and 9,756 t in 2011, what account for a decrease on stock numbers.
 - SSB will also decrease from 7,795 t to 6,223 t from 2009 to 2011.

Hence this exploitation pattern to maintain F statu quo 2009-2011 will produce a slight loss and continuing the decreasing trend observed during the last years.

In this situation it is particularly imporatant to pay special attention to recruitment levels as they could prompt sudden increases or drops in a near future.

Conclusions - Management considerations:

This fishery is considered as overexploited. Unless the recruitment levels increase in the near future, this fishery will being expolited at above a level which is believed to be sustainable in the long term, with no potencial room for further expansion and a higher risk of stock depletion/collapse.

Further work:

Reference points. Harvest Control Rules.

SCSA Assessment Forms