SAC GFCM Sub-Committee on Stock Assessment

Date*	5	October	2009	Code*	ANE0109Gir			
		Authors*	1	z, A.1*, Torres, P.1, Quint Ceruso, C.2, Alemany, F.3				
		Affiliation*	1	ga. Puerto Pesquero S/N.	fía. Centro Oceanográfico Fuengirola. 29640.			
Specie	es Scie	ntific name*	1 <i>Engraulis encrasicolus - ANE</i> Source: GFCM Priority Species					
			2	Source: -				
			3	Source: -				
(Geogra	phical area*	West	ern Mediterranean (FAO S	Subarea 37.1.)			
Geo g Combin		cal Sub-Area (GSA)* f GSAs 1 2 3	01 -	Northern Alboran Sea				

Assessment form

Basic data on the assessment

Code: ANE0109Gir

Sheet #0

Date* 5 Oct 2009	Authors*	Giráldez, A.1*, Torres, P.1, Quintanilla, L.F.1, Bellido, J.M.2,
		Ceruso, C.2, Alemany, F.3, Iglesias, M.3

Species	Engraulis encrasicolus - ANE		Anchovy, boquerón
Scientific		common	
name*		name	

Data Source

GSA*	01 - Northern Alboran Sea	Period of time*	2002-2008
GSA"	01 - Northern Alboran Sea	Period of time"	

Description of the analysis

Type of data*	Landings, Length and biological samplings. Tuning from Purse seiners	Data source [*]	Official Statistics, IEO Sampling Network, Acoustic Survey
Method of assessment*	XSA - Extended Survivor Analysis	Software used*	VPA Suite. Lowestoft. 1995

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	С
1		1			1	1	1	000000000000000000000000000000000000000	1	1	1	1

Comments, bibliography, etc.

Fishery assessment by VPA methods of the Spanish anchovy stock GSA01 is reported. VPA Lowestoft software suite was used and XSA was the assessment method. A separable VPA was also run as exploratory analysis for both stocks. Stochastic short term projections were also produced.

Comments, bibliography, etc.

Bibliography (Published papers and books):

Abella A., Caddy J.F., Serena F. (1997) Declining natural mortality with age and fisheries on juveniles: a Mediterranean demersal fishery yield paradigm illustrated for Merluccius merluccius. Aquatic Living Resources 10: 257–269.

Caddy, J.F. (1991). Death rates and time intervals: Is there an alternative to the constant natural mortality axiom? Rev. Fish Bio/. Fisheries, 1: 109-13 8.

De Oliveira, J.A.A., Uriante, A., and Roel, B., 2005. Potential improvements in the management of Bay of Biscay anchovy by incorporating environmental indices as recruitmen predictors. Fisheries Research, 75: 2-14.

Freon, P. and Misund, O.A., 1999. Dynamics of Pelagic Fish Distribution and Behaviour: Effects on Fisheries and Stock Assessment. Fishing News Books, UK, 348 pp.

Hilborn, R. and Walters C.J., 1992. quantitative Fisheries Stock Assessment; Choice, Dynamics and Uncertainty. New York: Chapman and Hall, 570 pp.

Lleonard, J. and Maynou, F., 2003. Fish Stock Assessment in the Mediterranean: state of the art. Scientia Marina, 67: 37-49.

Patterson, K., 1992. Fisheries for small pelagic species: an empirical approach to management targets. Review in Fish Biology and Fisheries, 2: 321-338.

Ramon M.M and Castro, J.A., 1997. Genetic variation in natural stocks of Sardina pilchardus (Sardines) from the western Mediterranean Sea. Heredity, 78: 520-528.

Sheperd, J.G., 1999. Extended Survivors Analysis: An improved method for the analysis of catch-atage data and abundance indices. Journal of Marine Science, 56: 584-591.

Bibliography (Technical Reports and grey literature):

Darby, C.D. and Flatman, S., 1994. Virtual Population Analysis, version 3.1 (Windows/DOS) user guide. Information Technology Series 1. CEFAS, Lowestoft, UK.

Reports from the SCSA and SAC of the General Fisheries Commission for the Mediterranean (GFCM), available at http://www.fao.org/fi/body/rfb/GFCM/gfcm_home.htm and/or ftp://cucafera.icm.csic.es/pub/scsa/

Reports from the Assessment Working Groups of the International Council for the Exploration of the Seas (ICES), particularly the small pelagics assessment working group WGMHSA. Available at www.ices.dk

Reports from the SGMED Working Groups on the Mediterranean of the Scientific, Technical and Economic Committee for Fisheries (STECF). Available at http://fishnet.jrc.it/web/stecf.

Assessment form

Biology of the species

Code: ANE0109Gir

Sheet B

Biology Somatic magnitude measured (LH, LC, etc)*					th	Units*	1/2 centimeter
Sex	Fem	Mal	Both	Unsexed			
Maximum size observed			17.5		Reproduction	on season	Spring-Summer
Size at first maturity			11		Reproduction	on areas	Málaga Bay
Recruitment size					Nursery are	eas	Málaga Bay

Parameters used (state units and information sources)

				S	ex	
		Units	female	male	both	unsexed
Growth model	L∞	cm			19	
	К	year-1			0.34191	
Growin moder	tO	year			-2.32099	
	your r					
Length weight	а				0.00401	
relationship	b				3.19449	
					-	
	Μ			M vector (see comments)		

sex ratio (mal/fem) 44/56

Comments

Combined ALKs 2003-2008 for all the years. Length Distributions 2003-2008. Length distrib 2003 was applied to 2002 landings.

Biological sampling 2003-2008 for Maturity at age and Weight-Length relationships.

Natural Mortality value (M) - Following the recommendation from the Workshop on Mediterranean Stock Assessment Standardization (SG-ECA/RST/MED 09-01), a vector (declining value of M with age) instead of a constant value was used. The vector was estimated using the ProdBiom method (Abella et al., 1997) based on Caddy (1991).

Age	М
0	1.17
1	0.44
2	0.32
3	0.27

Assessment form

General information about the fishery

Code: ANE0109Gir

Sheet P1

Data source*	Official Statistics, IEO San	npling Network, Acoustic	Year (s)*	2002-2008
Data aggregation figures between		By year 2002-2008		

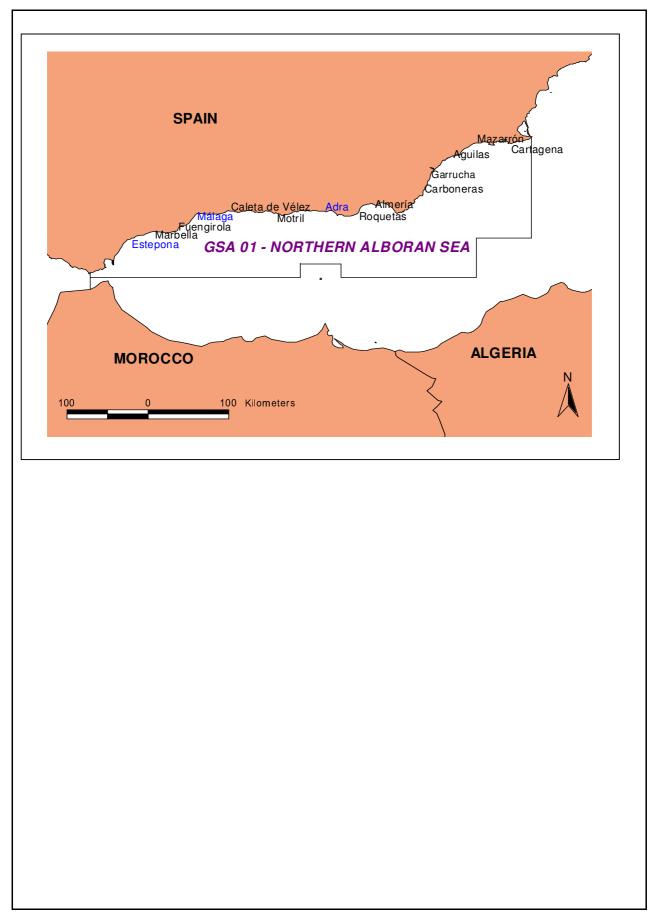
Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ESP	01	G - Purse Seine (6-12 metres)	02 - Seine Nets	31 - Small gregarious pelagic	ANE
Operational Unit 2	ESP	01	H - Purse Seine (12-24 metres)	02 - Seine Nets	31 - Small gregarious pelagic	ANE
Operational Unit 3						
Operational Unit 4						
Operational Unit 5						

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ESP 01 G 02 31 - ANE	28		178				
ESP 01 H 02 31 - ANE	103	0					
Total	131		178				

Legal minimum size 9 cm TL

Comments


The catch (landings) is not split by Fleet segments. It comprises 178 Tons in 2008 for the two Operational Units.

Beacuse that landing aggregation we prefer to fill pages P2a and P2b considering the two fleet segments as an unique pelagic fleet. We aim to split landings by Fleet segment in a near future.

Landing Ports are shown in the attached Figure. Sampling ports are highlighted in blue.

Tuning data from acoustic survey ECOMED for years 2003 to 2008.

Comments

Assessment form

Sheet P2a Fishery by Operational Unit

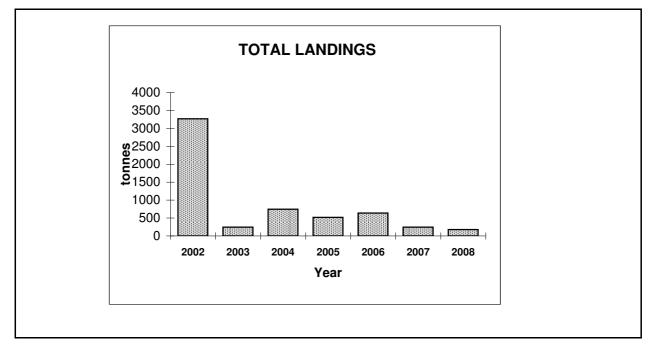
Code: ANE0109Gir

Page 1/2

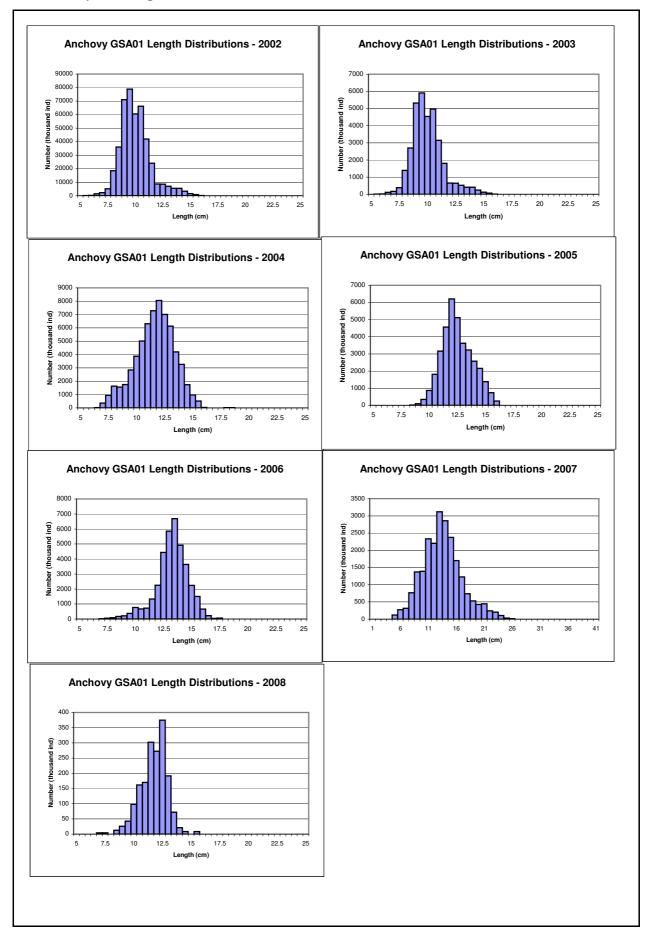
Data source*	Official Statistics, IEO Sampling Network	OpUnit 1*	ESP 01 G 02 31 - ANE

Time series

Year*	2002	2003	2004	2005	2006	2007
Catch	3268	245	746	518	637	245
Minimum size	5.5	5.5	6.5	8.5	7	6.5
Average size Lc	10	10	11.6	12.5	13.3	11.3
Maximum size	17	17	18.5	16	17.5	18
Fleet	187	184	168	167	160	149


Year	2008			
Catch	178			
Minimum size	7			
Average size Lc	11.8			
Maximum size	17.5			
Fleet	135			

Selectivity


Remarks

L25	
L50	
L75	
Selection factor	

Structure by size or age

Structure by size or age

Assessment form

Fishery by Operational Unit

Code: ANE0109Gir

Page 1 / 1

Sheet P2b

Data source*	Official Statistics, IEO Sampling Network	OpUnit 1*	ESP 01 G 02 31 - ANE

Regulations in force and degree of observance of regulations

Fishing license: fully observed Minimum landing size 9 cm: not fully observed (Some landings under minimum size in some specific ports).

No fishing allowed on weekend. Time at sea 12 hours per day and 5 days a week: fully observed Several technical measures regulations (gear and mesh size, engine, GRT, etc...): not fully observed Temporary fishing closures (March and April): fully observed.

Accompanying species

The most important are: Sardine (*Sardina pilchardus*) Mediterranean Horse Mackerel (*Trachurus mediterraneus*) Other Horse Mackerels (*Trachurus trachurus and Tachurus picturatus*) Mackerel (*Scomber scombrus*) Chub Mackerel (*Scomber japonicus*) Round sardinella (*Sardinella aurita*) Bogue (*Boops boops*)

ŀ	٩s	se	SS	m	ent	t f	0	m

Both

Indirect methods: VPA, LCA

Analysis # *

Code: ANE0109Gir

Page 1 / 1

XSA

Time series

Sex*

Data	Size	Age
(mark with X)	Х	Х

1	Model	Cohorts	Pseudocohorts
	(mark with X)	Х	

Equation used	VPA	Tunig method	XSA
# of gears	Purse seiners	Software	VPA95. Lowestoft suite
F _{terminal}	Not relevant to XSA		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	7	0	Recruitment	26 millions	
Average	See page 2a		Average population	See coments be	elow
Maximum	17.5	3+	Virgin population		
Critical			Turnover		

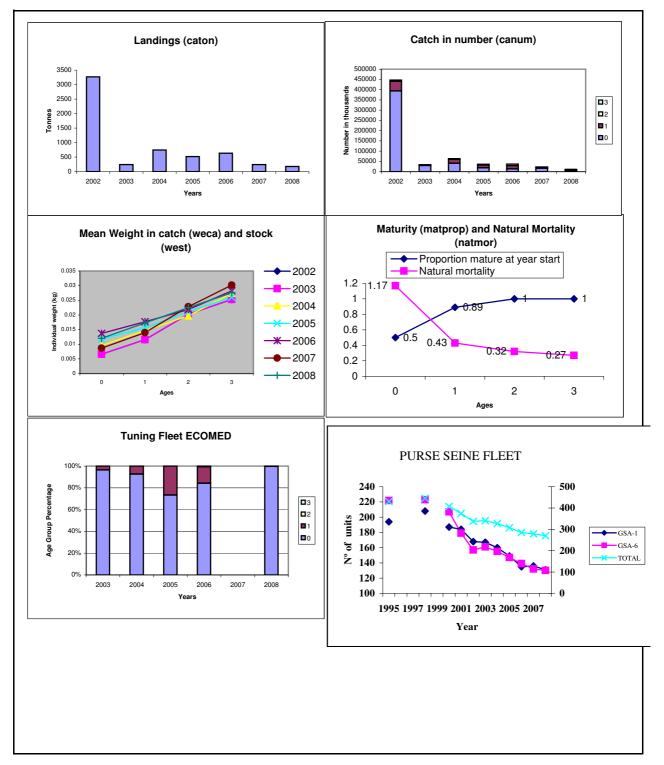
Average mortality

		Gear					
_	Total						
F ₁	Fbar=1.24						
F ₂							
Z	See Comments						

(F1 and F2 represent different possible calculations. Please state them)

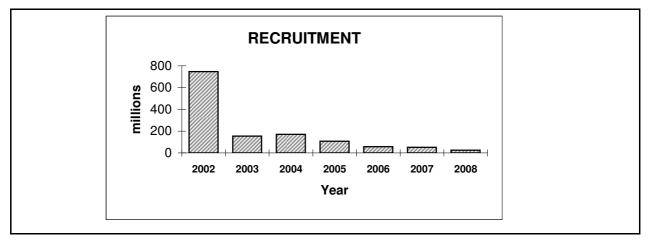
Comments

Reference F is Fbar0-3 (average of ages 0 to 3, which are considered the reference ages of this fishery). Following the recommendation from the Workshop on Mediterranean Stock Assessme a Natural Mortality vector with declining value of M with age has been considered instead of a constant value. The vector was estimated using the ProdBiom method (Abella et al., 1997) based on Caddy (1991).

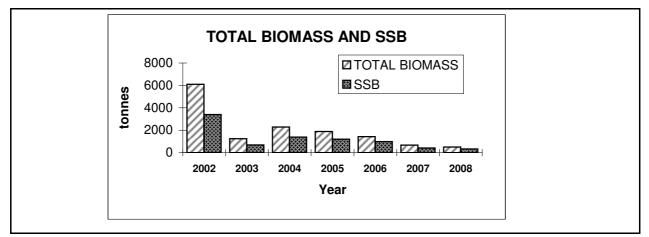

Age	e 0	1	2	3
F	0.38	1.15	2.17	1.25
Μ	1.17	0.43	0.32	0.27
	4. 4			-

Separable VPA results show the pattern of Log catchability residuals. Some conflict between ages seem to appear. Fleet behaviour and fishery movements could affect the catchability pattern. XSA main settings were Fbar 0-3; Age 1 for q stock-size independent and age 2 for q independent of age.

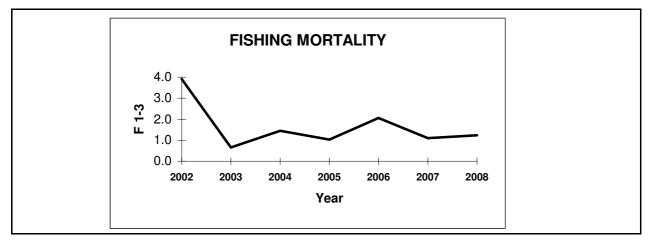
In 2002 were caugh 3268 t. Since then levels catches are low (below 800 t). The year 2008 the landings were 178 t, the lowest value of the series. There is not a trend clear in fishing mortality showing a similar level between 2003 and 2008. Recruitment in 2008 is similar previous years. Both Total biomass in 2008 (TB=497 t) and Spawning Stock Biomass in 2008 (SSB=329t) remains a low lewels. (See also figures in page VPA)


SAC GFCM - Sub-Committee on Stock Assessment (SCSA)							
Accos	sment fo	rm	Sheet A2 Indirect methods: data				
A3363	Sillentio						
				Ca	ode: ANE0109Gir		
Sex*	Both	Gear*	Purse seiners	Analysis # *	XSA		
Data	Input dat	ta for XS.	A				

Data



SAC GFCM - Sub-Committee on Stock Assessment (SCSA)								
Assessment form	Sheet A3							
Assessment form	Indire	ct methods: VPA results						
Code: ANE0109G								
		Page 1 / 1						
Sex* Both Gear* Purse Seiners	Analysis #*	XSA						


Population in figures

Population in biomass

Fishing mortality rates

Assessment form

Sheet other

Code: ANE0109Gir Page 1 / 1

Other assessment methods

Short Terms Deterministic Projections for three years (2009 to 2011).

MFDP software (Multi-Fleet Deterministic Projections).

Table below shows the management options from the short term catch prediction. Assuming statu quo F (Fbar06-08=1.46) and the recruitment is similar to the recruitment observed in 2007 and 2008 (Rlow=41 millions). We realise this option is more conservative but the most realistic and robust as recruitment has been continuously decreasing reaching their lowest values in last two years. Landings are predicted to be 152 t in 2009 and 139 t in 2010. Total biomass will decrease from 427 t in 2009 to 404 t in 2010 and SSB will also decrease from 268 t in 2009 to 246 t in 2011.

Then this exploitation pattern of maintaining F statu quo 2009-11, with scenarios of low recruitment rates, could prompt a decline of the fishery with SBB scenarios under current Bloss. In this situation it is particularly important to pay special attention to recruitment levels as they could prompt sudden increases or drops in a near future.

Biomass SSB 427	FMult 268	FBar 1	1.2327	Landings 152	l	
721			1.2027	152		
2010					2011	
Biomass SSB	FMult	FBar		Landings	Biomass	SSB
408	249	0	0	- 0	523	359
	249	0.1	0.1233	20	505	342
	249	0.2	0.2465	38	489	326
	249	0.3	0.3698	55	474	312
•	249	0.4	0.4931	70	461	300
	249	0.5	0.6164	84	449	288
	249	0.6	0.7396	97	438	278
	249	0.7	0.8629	108	429	269
•	249	0.8	0.9862	120	420	260
	249	0.9	1.1095	130	412	253
•	249	1	1.2327	139	404	246
•	249	1.1	1.356	148	397	240
•	249	1.2	1.4793	157	391	234
	249	1.3	1.6026	165	385	228
	249	1.4	1.7258	172	380	223
	249	1.5	1.8491	179	375	219
	249	1.6	1.9724	186	371	215
	249	1.7	2.0956	192	367	21 1
•	249	1.8	2.2189	198	363	207
	249	1.9	2.3422	204	359	20 4
•	249	2	2.4655	209	356	201
Input units are tho	usands and kg ·	 output in t 	tonnes			

Assessment form

Sheet D Diagnosis

Code: ANE0109Gir

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В					Not Reference Point defined yet
SSB					Not Reference Point defined yet
F					Not Reference Point defined yet
Y					Not Reference Point defined yet
CPUE					Not Reference Point defined yet

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

	0	 ? - (or blank) Not known or uncertain. Not much information is available to make a judgment; U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in total production;
al		M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
Unidimensional		F - Fully exploited. The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
nidime	\odot	O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
D		D - Depleted. Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
		R - Recovering. Catches are again increasing after having been depleted or a collapse from a previous;

		Exploitation rate	Stock abundance					
Bidimensional		No or low fishing	\odot	Virgin or high abundance		Depleted		
sio		Moderate fishing	\odot	Intermediate abundance Low abundance		Uncertain / Not assessed		
ner		High fishing mortality	\odot					
din		Uncertain / Not assessed	-		-			
B								

Comments

No reference points for anchovy can be suggested at this point.

Assessment form

Objectives and recommendations

Code: ANE0109Gir

Sheet Z

Management advice and recommendations*

This fishery is considered as overexploited. Unless the recruitmen levels increase in the near future, this fishery will being exploited at above a level which is bekieved to be sustainable in the log term, with no potencial room for further expansion an higher risk of stock depletion.

Advice for scientific research*

No reference points for anchovy can be suggested at this point. Further years will come a Time series extension suitable to suggest relevant Reference Points as well as Harvest Control Rules for this fishery.

Assessment form

Sheet C Comments

Code: ANE0109Gir Page 1 / 1

Comments*

Conclussions - Assessment:

Landings in 2008 were 178 t, showing a slight decrease from that of 2007 (245 t). There is not trend in the evolution of catchs. Since 2003, the catch mantein at low levels.

Fishing mortality is at a moderate-high level (F08=1.23), showing a rather stable trend.

Recruitment in 2007 decreases from that of previous years (R07=52 millions), showing the lowest value of the time series.

Both Total biomass in 2008 (TB=497 t) and Spawning Stock Biomass in 2008 (SSB=329 t) decreased slightly with respect to 2007. The highest value of SSB was in 2002 (6095 t)

Conclusions - Catch Forecasting:

statu quo F (Fbar06-08=1.46) and (Rlow=41 mill):

landings are predicted to be 152 t in 2009 and 139 t in 2010 t. Total biomass will decrease from 427 t in 2009 to 404 t in 2010 SSB will also decrease from 268 t in 2009 to 249 t in 2010.

This exploitation pattern of maintaining F statu quo 2008-10, with scenarios of low recruitment rates, could prompt a decline of the fishery with SBB scenarios under current Bloss.

In this situation it is particularly important to pay special attention to recruitment levels as they could prompt sudden increases or drops in a near future.

Conclusions - Management considerations:

This fishery is considered as overexploited. Unless the recruitment levels increase in the near future, this fishery will being expolited at above a level which is believed to be sustainable in the long term, with no potencial room for further expansion and hiher risk of stock depletion.

Further work:

Reference points. Harvest Control Rules.