SAC GFCM Sub-Committee on Stock Assessment

Date*	18 October	2010 Code* HKE0910F.
	Authors*	F. Colloca ¹ , P. Sartor ² , A. Ligas ² , M. Sbrana ² , A.Mannini ³ , A. Abella ⁴
	Affiliation*	 ¹Dep. Environmental Biology, University of Rome "La Sapienza", Italy ²Centro Interuniversitario di Biologia Marina, Livorno, Italy ³Dip.Te.Ris., Università di Genova, Italy ⁴ARPAT, Area Mare, RIBM, Livorno, Italy
Speci	es Scientific name*	1 Source: GFCM Priority Species
		2 Source: -
		3 Source: -
	Geographical area*	Northwestern Mediterranean
Geo	graphical Sub-Area (GSA)*	09 - Ligurian and North Tirrenian Sea
Combi	nation of GSAs 1 2 3	

Assessment form

Basic data on the assessment

Code: HKE0910F.

Sheet #0

Date* 18	8 Oct 2010	Authors*	F. Colloca	, P. Sartor	2, A. Ligas2, , M.	Sbrana2, A	Mannini3, A.
			Abella4				
Species			Sp	ecies	European hake		

common

name*

Data Source

Scientific

name*

GSA*	09 - Ligurian and North Tirrenian Sea Period of time*	1994-2010

Description of the analysis

Merluccius merluccius - HKE,,

Type of data*	commercial catches, size structure of the catch by gear, trawl surveys size	Data source*	catch assessment surveys
Method of	Length cohort analysis; Yield	Software	SURBA, ICES software for HCR, Yield
assessment*	forecasting	used*	software, XSA

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	С
1	1	1	1		1	1	1	1	1	1	1	1

Comments, bibliography, etc.

Bibliography

Abella A., Bartolino V., Bertrand J., Colloca F., Follesa C., Mannini A., Reale B., Rinelli P., Sbrana M., Spedicato M.T., Voliani A., Zupa R., 2007. Use of composite models for the assessment of European hake, Red mullet and Norway lobster stocks in the North-Western Mediterranean (GSAs 7, 8, 9, 10 and 11). WG SAC Athens, September 2007.

Abella A., Belluscio A., Bertrand J., Carbonara P. L., Giordano D., Sbrana M., Zamboni A., 1999. Use of MEDITS trawl survey data and commercial fleet information for the assessment of some Mediterranean demersal resources. Aquatic Living Resources, 12(3): 155-166.

Abella A., Caddy J., Serena F., 1997. Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius in the Mediterranean. Aquat. Liv. Res., 10: 257-269.

Abella A., Fiorentino F., Mannini A., Orsi Relini L. 2008. Exploring relationships between recruitment of European hake (Merluccius merluccius L. 1758) and environmental factors in the Ligurian Sea and the Strait of Sicily (Central Mediterranean). Journal of Marine Systems, 71: 279-293.

Lleonart I Salat I (1997) VIT: Software for fishery analysis User's manual FAO Computerized

Abella A., Serena F., Ria M., 2005. Distributional response to variations in abundance over spatial and temporal scales for juveniles of European hake (Merluccius merluccius) in the Western Mediterranean Sea. Fisheries Research, 71: 295–310.

Abella A.J., Serena F., 1998. Selettività e vulnerabilità del nasello nella pesca a strascico. Biol. Mar. Medit., 5 (2): 496-504.

Bartolino V., Colloca F., Sartor P., Ardizzone G., 2008b. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fisheries Research, 92: 277-288.

Bartolino V., Ottavi A., Colloca F., Ardizzone G.D., Stefánsson G. 2008a. Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J. Mar. Sci. 65: 963-969.

Belcari P., Ligas A., Viva C., 2006. Age determination and growth of juveniles of the European hake, Merluccius merluccius (L., 1758), in the northern Tyrrhenian Sea (NW Mediterranean). Fisheries Research., 78: 211-217

Biagi F., Cesarini A., Sbrana M., Viva C., 1995. Reproductive biology and fecundity of Merluccius merluccius (Linnaeus, 1758) in the Northern Tyrrhenian Sea. Rapp. Comm. int. Mer Médit., 34: 23.

Carpentieri P., Colloca F., Ardizzone G.D., 2008. Daily ration and feeding activity of juvenile hake in the central Mediterranean Sea. J. Mar. Biol. Ass. U.K., 88 (7): 1493-1501.

Carpentieri P., Colloca F., Cardinale M., Belluscio A., Ardizzone G.D., 2005. Feeding habits of European hake (Merluccius merluccius) in the central Mediterranean Sea. Fisheries Bulletin US, 103 (2): 411-416.

Colloca F., Belluscio A., Ardizzone G.D., 2000. Sforzo di pesca, catture e gestione dello stock di nasello (Merluccius merluccius) in un'area del Tirreno centrale. Biol. Mar. Med 7(1): 117-129.

Colloca F., Carpentieri P., Balestri E., Ardizzone G.D., 2004. A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Marine Biology, 145: 1129-1142.

Colloca, F., V. Bartolino, G. Jona Lasinio L. Maiorano, P. Sartor and G. Ardizzone.- 2009. Identifying fish nurseries using density and persistence measures. Mar Ecol Prog Ser. 381: 287–296

De Ranieri S., Belcari P., Bertolini D., Biagi F., Chiericoni V., Cognetti A.G., Mori M., Nannini N., Reale B., Rocca V., Sartor P., Sbrana M., 1997. Reclutamento di alcune specie ittiche demersali nel Mar Tirreno Settentrionale. Biol. Mar. Medit., 4(1): 237-243.

Nannini N., Pinna D., Chiericoni V., Biagi F., Belcari P., 2001. Ciclo ovarico di Merluccius merluccius (Linnaeus, 1758) nel mar Tirreno settentrionale. Biol. Mar Medit., 8 (1): 745-748.

Orsi Relini L., Capparena M., Fiorentini F., 1989. Spatial–temporal distribution and growth of Merluccius merluccius recruits in the Ligurian Sea. Observations on the 0-group. Cybium 13: 263–270.

Orsi Relini L., Papaconstantinou C., Jukic-Peladic S., Souplet A., Gil de Sola L., Piccinetti C., Kavadas S., Rossi M., 2002. Distribution of the Mediterranean hake populations (Merluccius merluccius smiridus Rafinesque, 1810) (Osteichthyes: Gadiforems) based on six years monitoring by trawl surveys: some implications for management. Sci. Mar. 66 (Suppl.2): 21-38.

Reale B., Sbrana M., De Ranieri S., 1995. Population dynamics of Merluccius merluccius exploited by two different trawl-nets in the Northern Tyrrhenian Sea. Rapp. Comm. int. Mer Médit., 34: 254.

Sartor P., Carlini F., De Ranieri S., 2003a. Diet of young european hake (Merluccius merluccius) in the northern Tyrrhenian Sea. Biol. Mar. Medit. 10 (2): 904-908.

Sartor P., Sartini M., Reale B., Sbrana M., 2001b. Analysis of the discard practices in the Merluccius merluccius (1, 1758) bottom trawl fishery of the Northern Tyrrhenian Sea. Biol. Mar. Medit. 8(1): 771-774.

Sartor, P., Recasens L., Viva C., Lleonart J., 2001a. Analysis of the impact of the fishery on the adult population of European hake in the Northwestern Mediterranean. Rapp. Comm. Int. Mer Médit., 36: 321-322.

Assessment form

Biology of the species

Code: HKE0910F.

Sheet B

Dielogy							
Diology	Somatic magni	tude measu	ired (LH, LC	, etc)*	TL	Units*	cm
	Sex	Fem	Mal	Both	Unsexed		
Maximum	size observed	104	62			Reproduction season	mainly in february
Size at firs	t maturity	31-37	22-26			Reproduction areas	yes
Recruitmen	nt size	12	12			Nursery areas	yes

Parameters used (state units and information sources)

Sex	F				
Growth model					
Data source					
L∞ (growth)	104				
K (growth)	0.2				
t0 (growth)	0.03				
length-weight relationship					
a (length-weight)	0.006657				
b (length-weight)	3.028				
sex ratio	1				
Μ	vector				

Comments

Comments

Assessment form

General information about the fishery

Code: HKE0910F.

Sheet P1

Data source*	EC Data Collection Regula	ation	Year (s)*	1994-2006
Data aggregation figures between	on (by year, average n years, etc.)*	Monthly		

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ITA	09	C - Minor gear with engine (6-12 metres)	07 - Gillnets and Entangling Nets	34 - Demersal slope species	HKE
Operational Unit 2	ITA	09	D - Trawl (6-12 metres)	03 - Trawls	33 - Demersal shelf species	HKE
Operational Unit 3	ITA	09	E - Trawl (12-24 metres)	03 - Trawls	33 - Demersal shelf species	HKE
Operational Unit 4	ITA	09				HKE
Operational Unit 5	ITA	09				HKE

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ITA 09 C 07 34 - HKE	50	Kg	642000				
ITA 09 D 03 33 - HKE	339*	Kg	0				
ITA 09 E 03 33 - HKE	339*	Kg	834000*				
	361						
Total	411		642000				

Legal	minimum	size	20
-------	---------	------	----

Comments

*Reported hake catch for trawlers is the sum of the two fleet segments

Official data on total annual catch of acompanying important commercial species:

Eledone cirrhosa 945 tons, *Parapenaeus longirostris* 464 tons, *Mullus barbatus* 748 tons, *Nephrops norvegicus* 159 tons.

Sheet P1 (name 2)

Comments

Tab. 7.4.1 - Te	chnical charac	cteristics of the	e trawl fleet o	f GSA9 (DCR official data)
Year	2004	2005	2006	
N. of boats	344	358	361	
GT	12.818	12.961	13.191	
kW	74.017	74.606	75.514	
Mean GT	37.3	36.2	36.5	
Mean kW	215.2	208.4	209.2	

Assessment form

Fishery by Operational Unit

Code: HKE0910F.

Page 1 / 3

Sheet P2a

Data source*	catch assessment survey EU-(DCF)	OpUnit 1*	ITA 09 C 07 34 - HKE
	3		

Time series

Year*	2004	2005	2006	2007	2008	2009
Catch	1195	2171	2581	2004	2071	1900
Minimum size	4	4	4	12	12	6
Average size Lc						
Maximum size	72	72	72	72	72	76
Fleet	344	358	361	trawl + gillnets	trawl + gillnets	trawl + gillnets

Year	2010			
Catch	1620			
Minimum size	5			
Average size Lc				
Maximum size	82			
Fleet	trawl + gillnets			

Selectivity

Remarks

L25	8	S.F.=Lc/mesh size (both in mm)
L50	12	
L75	14	
Selection factor	3	

Structure by size or age

Sheet P2a (Page 1 / 3 - 2° sheet)

Structure by size or age

L (cm) 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 24 25 26 27 23 30 31 32 33 34 45 35 36 37 38 39 40 41 42 43 44 45 44 45 48 49 48 48 49 48 48 48 48 48 48 48 48 48 48	Trawl 0.000 0.000 0.000 2.096 0.000 2.959 2.192	Gilln
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 23 24 25 26 33 34 35 37 38 39 40 41 42 44 45 46 44 44 44 44 44 44 44 44 44	0.000 0.000 0.000 2.096 0.000 2.959 2.192	
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 22 23 24 22 23 24 25 26 27 28 29 30 31 32 33 34 35 33 34 35 36 37 38 39 40 41 44 44 44 44 44 44 44 44 44 44 44 44	0.000 0.000 2.096 0.000 2.959 2.192	
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	0.000 0.000 2.096 0.000 2.959 2.192	
9 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	2.096 0.000 2.959 2.192	
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	0.000 2.959 2.192	
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49 49 49 40 40 40 40 40 40 40 40 40 40	2.959	
12 13 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 48 49 48 49 48 49 48 49 48 49 48 48 49 48 48 49 48 48 49 48 48 48 48 49 48 48 48 48 48 48 48 48 48 48	2.959	
15 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	2.192	
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	25 266	
13 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 44 45 46 47 48 49	25.266	
13 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 23 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48 49	710.40/	
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	1035 710	
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	1022.070	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	842 597	
22 22 22 23 24 25 26 27 28 29 30 31 32 33 34 35 33 34 35 36 37 38 39 40 41 42 43 44 44 45 46 47 48 49	625 850	
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	488 057	0
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	480.522	5
24 25 26 27 28 29 30 31 32 33 33 33 33 33 33 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	408.474	6
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	403.230	13
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	445.884	29
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	316.545	37
28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	201.511	46
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	122.876	83
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	85.698	82
31 32 33 34 35 36 37 38 39 40 41 42 43 44 43 44 45 46 47 48 49	73.017	114
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	39.825	107
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	50.439	87
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	38.843	73
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	29.129	67
36 37 38 39 40 41 42 43 43 44 45 46 47 48 49	20.999	56
37 38 39 40 41 42 43 44 45 46 47 48 49	15.076	47
38 39 40 41 42 43 44 45 46 45 46 47 48 49	14.428	43
 39 40 41 42 43 44 45 46 47 48 49 	25.951	46
40 41 42 43 44 45 46 47 48 49	12.049	30
41 42 43 44 45 46 47 48 49	17.676	25
42 43 44 45 46 47 48 49	14.141	22
43 44 45 46 47 48 49	17.147	18
44 45 46 47 48 49	6.953	14
45 46 47 48 49	10.637	13
46 47 48 49	6.575	17
47 48 49	8.152	7
48 49	3.535	9
49	6.314	10
	3.996	8
50	7.236	6
51	1.088	6
52	4.301	6
55	2.559	7
55	11.404	5
56	4 055	5
57	7.959	5
58	4,440	9
59	8.188	3
60	2.680	5
61	0.171	4
62	0.000	5
63	4.247	3
64	3.877	5
65	1.319	4
66	0.419	4
67	0.419	2
68	1.340	3
69	0.000	2
70	0.526	2
71	0.000	2
72	3.626	0
73	2.968	0
74	1.205	2
75	0.000	1
76	0.275	0
77	0.000	
78	0.000	1
79	0.551	
80	0.000	0
81	0 000	
82	0.000	1

Assessment form

Fishery by Operational Unit

Code: HKE0910F.

Page 1 / 1

Sheet P2b

Data source*	official data	OpUnit 1*	ITA 09 C 07 34 - HKE

Regulations in force and degree of observance of regulations

The maximum allowed length of gillnets is 4000 m for one fishers, 5000 m for two fishers up to 6000 m for three or more embarked fishers. The maximum allowed net height is 10 m. The minimum mesh size is 16 mm. The legal size for hake is 20 cm.

Accompanying species

The most abundant by-catch species are squids (Illex coindetii, Todaropsis eblanae), chub mackerel	
(Scomber japonicus) and horse mackerel (Trachurus trachurus), Lepidopus caudatus.	

Assessment form

Fishery by Operational Unit

Code: HKE0910F. Page 2 / 1

Sheet P2b

Data source*	OpUnit 2*	ITA 09 D 03 33 - HKE

Regulations in force and degree of observance of regulations

 Fishing closure for trawling: 30 days in late summer (only enforced some years) Minimum landing sizes: EC regulation 1967/2006: 20 cm TL for hake. Cod end mesh size of trawl nets: 40 mm (stretched, diamond meshes) till 30/05/2010. From 1/6/2010 the existing nets will be replaced with a cod end with 40 mm (stretched) square meshes or a cod end with 50 mm (stretched) diamond meshes. Towed gears are not allowed within three nautical miles from the coast or at depths less than 50 m when this depth is reached at a distance less than 3 miles from the coast. Two small No Take Zones ("Zone di Tutela Biologica", ZTB) are present inside the GSA9; one off the Giglio Island (50 km2, northern Tyrrhenian Sea) another off Gaeta, (125 km2, central Tyrrhenian Sea). In both areas fishing gears operating on the bottom are not allowed six months per year. 	

Accompanying species

Hake trawl fishery exploits a highly diversified species assemblage: deep sea pink shrimp (Parapenaeus
longirostris) horned octopus (Eledone cirrhosa), poor cod (Trisopterus minutus capelanus), squids (Illex
<i>coindetii</i>), are among the most important species in the by catch.

Assessment form

Fishery by Operational Unit

Code: HKE0910F. Page 3 / 1

Sheet P2b

Data source*	OpUnit 3*	ITA 09 E 03 33 - HKE

Regulations in force and degree of observance of regulations

 Fishing closure for trawling: 30 days in late summer (only enforced some years) Minimum landing sizes: EC regulation 1967/2006: 20 cm TL for hake. Cod end mesh size of trawl nets: 40 mm (stretched, diamond meshes) till 30/05/2010. From 1/6/2010 the existing nets will be replaced with a cod end with 40 mm (stretched) square meshes or a cod end with 50 mm (stretched) diamond meshes. Towed gears are not allowed within three nautical miles from the coast or at depths less than 50 m when this depth is reached at a distance less than 3 miles from the coast. Two small No Take Zones ("Zone di Tutela Biologica", ZTB) are present inside the GSA9; one off the Giglio Island (50 km2, northern Tyrrhenian Sea) another off Gaeta, (125 km2, central Tyrrhenian Sea). In both areas fishing gears operating on the bottom are not allowed six months per year. 	

Accompanying species

Hake trawl fishery exploits a highly diversified species assemblage: deep sea pink shrimp (Parapenaeus
longirostris) horned octopus (Eledone cirrhosa), poor cod (Trisopterus minutus capelanus), squids (Illex
<i>coindetii</i>), are among the most important species in the by catch.

	SAC GFCM - Sub-Committee on Stock Assessment (SCSA)								
Assessment	form					Sheet A1			
Assessment					Indirect method	s: VPA, LCA			
Sex* both]					Code	E HKE0910F. Page 1 / 1		
Time cories						Analysis # *	1		
Time series			_				_		
Data	Size	Age		Model	Cohorts	Pseudocohorts			
(mark with X)	х			(mark with X)	Х				
	-	-	•		-	-	-		
Equation used		catch e	quation		Tunig method	Extended Survivors Ar	alysis (XSA)		
# of gears 2			Software	FLXSA 2.1 (R script)					
F _{terminal}		2.1				•			

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	5		Recruitment	65.375 millions	1307 tons
Average			Average population	75174	3427.5 tons
Maximum	82		Virgin population		
Critical			Turnover		
					SSB
					1318 tons

Average mortality

			Gear						
	Total								
F ₁	1.08	trawl	2010						
F ₂	0.92	gillnets	2010						
Z	2.49	-			-				

(F1 and F2 represent different possible calculations. Please state them)

Comments

DCF landing data for hake catch are available for gillnets and trawl fisheries since 2005. Discard data (i.e. annual amount of discards and their size structures) were available for 2006, 2009, 2010. Discard proportion and its age composition estimated for 2006 was applied to calculate catch data for 2005 and 2007 whereas 2009 discard data were used to adjust 2008 landing data. Numbers at age of hake catch, weight at age, mortality at age and maturity at age data were compiled for age groups 1 to 5+ and used as XSA input data for 2005-2010.

During 2005-2010 SSB oscillated between 943.6 and 1443.7 tons (2010), while the total biomass was estimated to be at about 3158-3600 tons.

The largest year classes were observed in 2005 (199.6 millions) and 2008 (174.8 millions), whereas a very low recruitment was estimated in 2010 (65.37 millions). Trend in recruitment from XSA is in line with the MEDITS trend that shows a peak in 2008 and a strong decline in 2010.

ir S	Codeu I	hods: data
	Code: 1	HKE0910F.
Sex* both Gear* bottm trawl=gear 1; gillnet=gear 2 Analysis	<mark># * 1</mark>	

Data

Inp	ut data	3				
	Catch-at-a	age (thousa	inds)			
Age						
class	2005	2006	2007	2008	2009	2010
1	56407	85166	72515	18677	14276	12051
2	7940	8709	6740	17238	10114	5575
3	509	618	593	626	529	549
4	48	120	34	106	71	129
5+	19	55	5	56	42	97
	Weight-at	-age				
Age						
class	2005	2006	2007	2008	2009	2010
1	0.005685	0.006063	0.005623	0.005434	0.007179	0.02
2	0.103187	0.136246	0.128155	0.121672	0.103433	0.111
3	0.431672	0.611844	0.603328	0.596374	0.453813	0.588
4	1.34	1.369493	1.359158	1.348943	1.36	1.306
5+	2.542673	2.554371	2.530105	2.539243	2.635517	2.34375
	Maturity-	at-age				
Age						
class	2005	2006	2007	2008	2009	2010
1	0	0	0	0	0	0
2	0.21	0.21	0.21	0.21	0.21	0.21
3	0.9	0.9	0.9	0.9	0.9	0.9
4	1	1	1	1	1	1
5+	1	1	1	1	1	1
	Mortality	-at-age				
Age						
class	2005	2006	2007	2008	2009	2010
1	1.3	1.3	1.3	1.3	1.3	1.3
2	0.6	0.6	0.6	0.6	0.6	0.6
3	0.46	0.46	0.46	0.46	0.46	0.46
4	0.41	0.41	0.41	0.41	0.41	0.41
5+	0.25	0.25	0.25	0.25	0.25	0.25

					_					
Tunir	Tuning data									
MEDITS										
Mean ab	undance									
	Age									
Year	1	2	3	4 5+						
2005	3278.9	79.3	3.4	0.5	0.4					
2006	2865.0	114.0	6.2	1.1	0.4					
2007	3559.8	69.1	4.2	2.7	0.2					
2008	8529.0	94.8	3.6	1.0	1.0					
2009	5121.2	60.9	1.9	0.4	0.1					
2010	2042.4	40.8	3.1	0.4	0.2					

Assessment form

Indirect methods: VPA results

Code: HKE0910F.

Sheet A3

					Page 1 / 1
Sex*	both	Gear*	bottom trawl + gillnet	Analysis #*	XSA

Population in figures

	2005	2006	2007	2008	2009	2010
SSB (tons)	941.74	1298.53	1189.53	1084.61	991.84	1318.36
TB (tons)	3426.8	3603.1	3211.4	3158.1	3046.5	3427.5
Recruitment (millions)	199.619	105.797	81.395	174.016	163.639	65.375
Yield (including discards)	1923.3	2184.3	1977.9	1795.8	1648.6	1681.3

Population in biomass

age		2005	2006	2007	2008	2009	2010
	1	1134.7	640.88	458	945.62	1174.8	1308
	2	1651.7	2020.4	1885	1373.2	1063.5	940
	3	455.33	675.78	751	430.35	401.18	588
	4	105.35	182.85	5	163.87	164.37	222
	5+	79.748	83.186	113	245.06	242.72	370

010	Tons		
308			
940			
588			
222			
370			

Fishing mortality rates

F at age						
age	2005	2006	2007	2008	2009	2010
1	1.3	0.67	1	1.54	1.66	0
2	2.07	1.88	2	1.95	1.71	2
3	1.61	5.26	2	1.33	1.19	2
4	1.96	3.66	2	1.75	1.7	2
5+	1.96	3.66	2	1.75	1.7	2
Fbar ₂₋₄	1.88	3.6	2	1.67	1.53	2
Fbar ₁₋₂	1.69	1.27	2	1.74	1.69	1

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)					
Assessment f	orm			Sheet Y	
Assessment form				Indirect	methods: Y/R
				Cod	e: HKE0910F.
Sex both]		[Analysis #	Y/R
# of gears	2	Software	Yield		

Parameters used

Vector F	yes
Vector M	yes
Vector N	

Model characteristics

M vector Age1=1.3 , Age2=0.6, Age3=0.46, Age4=0.41, Age5=0.3; Age6=0.2 Fmax = 0.35; F0.1= 0.22 and Fref = 0.28

Results

	Total	Gear			
	Total				
Current YR	33.7				
Maximum Y/R	46.42				
Y/R 0.1					
F _{max}	0.35				
F _{0.1}	0.22				
Current B/R					
Maximum B/R					
B/R 0.1					
Fref	0.28				

Comments

Yield software quantified uncertainty by repeatedly selecting a set of biological and fishery parameters by sampling from the probability distributions for uncertain parameters set by the user, and then calculating the quantities of interest. In this sampling, it is assumed that each of the uncertain parameters are independently distributed, even though for some biological parameters, this assumption is almost certainly incorrect (Hoggarth *et al.*, 2006). F_{max} and F_{ref} , this latter corresponding to F at SSB/initial SSB = 0.30, were assumed as limiting reference points. $F_{0.1}$ was assumed as target reference point. The probability distributions of the three RPs showed a considerable variations (Fig. 5.7.5.3.1). The following mean values were obtained: $F_{max} = 0.35$; $F_{0.1} = 0.22$ and $F_{ref} = 0.28$. The maximum predicted values were respectively 0.59 (F_{max}), 0.36 (F_{01}) and 0.41 (F_{ref}). RPs suggest an overfishing situation for the stock considering current F about six times higher than the limit and target RPs F.

Comments

Probability distribution of hake RPs in the GSA 09 obtained using the Yield software (age groups 1-5).

Assessment form

Sheet other

Code: HKE0910F.

Page 1 / 1

Other assessment methods

Trawl Surveys data were used expressed in kg/km2. The estimation of Z was done using SURBA, after the reconstruction of the demographic structure of the stock and slicing among age classes.

F1-3 shows a clear increasing trend (p<0.01) from 0.8 (1994) to 2.4 (2008), decreasing to 1.77 in 2009. Relative SSB decreased significantly (p<0.01) showing the lowest values in 2009-2010. Recruitment fluctuated from year to year without a clear temporal pattern during MEDITS. The largest year classes were observed in 1998 and 2009. A low recruitment index occurred in 2010.

Assessment form

Sheet D Diagnosis

Code: HKE0910F.

Reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В	3427	tons			470 as potential B at F=0
SSB	10-Aug	tons	30%		1318 tons = 10-15% of SSB at F01. Medits data shows a decline
F	1.5 to 2.0				progressive reduction of fishing pressure on juveniles
Y					
CPUE					
Fmax					
F0.1			0.22		
F30%SSE			0.28		
ZMBP					

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

	\bigcirc	? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
	0	U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in total production;
al	0	M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
Unidimension	0	F - Fully exploited. The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
	\odot	O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
	0	D - Depleted. Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
	\bigcirc	R - Recovering. Catches are again increasing after having been depleted or a collapse from a previous;

	Exploitation rate	Stock abundance			
nal	No or low fishing	C Virgin or high abundance C Depleted			
Isic	Moderate fishing	Intermediate abundance Uncertain / Not			
ner	 High fishing mortality 	Low abundance assessed			
Bidin	C Uncertain / Not assessed				

Comments

Landings per unit effort show an increasing trend in the last 3-4 years in some ports. It is too early for stressing that this phenomenon is a signal of recovering of the stock that was (or is still) almost depleted.

Assessment form

Objectives and recommendations

Code: HKE0910F.

Sheet Z

Management advice and recommendations*

The stock appeared heavily overexploited in 2009-2010 and F needs a consistent reduction from the current F towards the candidate limit reference points for long term sustainability based on F around F0.1 (0.22). However, considering the high productivity in terms of incoming year classes, this stock has the potential to increase in size quickly if F is reduced towards Fmsy. The continued lack of older fish in the surveyed population indicates exploitation rates far beyond those considered consistent with high yields and low risk. A special attention should be paid to the activity of small scale fisheries targeting adults in order to discourage any increase of catches as long as the removals of juveniles is not reduced.

The protection of the stable nursery areas identified in the GSA 9 would allow to consistently reduce the fishing mortality on juveniles, protecting the habitats where the bottom settlement take place and contributing to rebuild the spawning stock.

To this aim the selectivity of the trawl nets would need to be improved through the adoption of a set of technical improvements aimed at reducing the impact on juveniles, such as grid, escape panel, modified separator trawl etc.

Advice	for s	cientific	research*
/ 10/100			

Assessment form

Sheet C Comments

Code: HKE0910F. Page 1 / 1

Comments*

Most of the assessments have been performed during the Working groups organized by the Scientific Technical and Economic Commission of Fisheries (STECF) of the European Comunity.

Authors F. Colloca1, P. Sartor2, A. Ligas2, M. Sbrana2, Year 2010 A.Mannini3, A. Abella4 Merluccius merluccius - HKE **Species Scientific name** Source: GFCM Priority Species Source: Source: 09 - Ligurian and North Tirrenian Sea **Geographical Sub-Area**

Abstract for SCSA reporting

Fisheries (brief description of the fishery)*

Hake is the demersal species providing the highest landings and incomes for the GSA9. About 60% of landings of hake is due to bottom trawl vessels; the remaining fraction is provided by artisanal vessels using set nets, in particular gillnets. The trawl fleet of GSA9 at the end of 2008 accounted for 339 vessels . Hake fishing grounds consists in soft bottoms of continental shelfs and the upper part of continental slope. Fishing pressure shows some geographical differences inside the GSA9 according to the fleets size and bottom characteristics. Trawl landings in GSA 9 are dominated by small sized specimens; they are basically composed by age groups 0+ and 1+. Gillnet fishery lands mostly age 2 and age 3 fish. High quantities of small size hake are routinely discarded. The artisanal fleets, according to the official data account for 1309 vessels; widespread in many harbours along the continental and insular coasts. Of these, about 50 vessels are located in some harbors of the GSA9 (e.g. Marina di Campo, Ponza, Porto Santo Stefano). The fishing capacity of the GSA 09 has shown in these last 10 years a progressive reduction; from 1996 to 2010. The total fishing days carried out by all the GSA 09 trawlers decreased from about 65,000 in 2004 to about 63,000 in 2006, also as effect of a reduction from 187 to 177 in the mean number of fishing days/year. The same reduction pattern was observed in the Kw*days at sea either for trawlers and fixed nets.

Source of management advice*

(brief description of material -data- and methods used for the assessment)

An XSA assessment was carried out using the catch data collected under DCF from 2005 to 2010 calibrated with fishery independent data (MEDITS abundance indices for 2005-2010). SURBA analysis was also carried out using both MEDITS survey data (1994-2010) and GRUND (1995-2004).

Yield per recruit analysis allowed to define the level of F that is expected to maximize yield per recruit (Fmax) as well as the precautionary reference points F0.1 and F30% SSBo. F for each year was estimated using the software SURBA, assuming different catchability and natural mortality rate by age.

Stock Status*

O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;

Exploitation rate

Stock abundance

High fishing mortality

.

Low abundance

Comments

Management advice and recommendations*

Advice	for	scientific	research*

