SAC GFCM Sub-Committee on Stock Assessment

Date* 18 (October	2010 Code* GME0910A.A						
		A.Abella4, F. Colloca ¹ , P. Sartor ² , A. Ligas ² , M. Sbrana ² , A.Mannini ³ ,						
Af		¹ Dep. Environmental Biology, University of Rome "La Sapienza", Italy ² Centro Interuniversitario di Biologia Marina, Livorno, Italy ³ Dip.Te.Ris., Università di Genova, Italy ⁴ ARPAT, Area Mare, RIBM, Livorno, Italy						
Species Scientif	ic name*	1 Source: -						
		2 Source: - 3						
	-	Source: -						
Geographi	cal area*	Northwestern Mediterranean						
Geographical S	(GSA)*	09 - Ligurian and North Tirrenian Sea						

Assessment form

Basic data on the assessment

Code: GME0910A.A

Sheet #0

Date*	18 Oct 2010	Authors*	A.Abella4,	F.	Collo	ca1,	P. 5	Sartor	2, A	. Lig	gas2	, , M	. Sbi	rana2	,	
			A.Mannini	3,												
				-												

Species		Species	Blackmouth catshark
Scientific	Galeus melastomus- GME , ,	common	
name*		name*	

Data Source

GSA*	09 - Ligurian and North Tirrenian Sea Period of time*	1994-2011
------	---	-----------

Description of the analysis

I vpe of data*	commercial catches, size structure of the catch by gear, trawl surveys size	Data source*	catch assessment surveys
	Length cohort analysis; Yield forecasting	Software used*	

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	С
1					1	1	1	1	1	1	1	1

Comments, bibliography, etc.

Au, D.W. & Smith, S.E. 1997. A demographic method with population density compensation for estimating productivity and yield per recruit of the leopard shark (Triakis semifasciata). Canadian Journal of Fisheries and Aquatic Sciences, 54: 415–420

Caswell, H. 1989. Matrix population models: construction, analysis and interpretation. Sinauer, Sunderland, Massachusetts

Goodyear, C. P. 1995. Red snapper stocks in U.S. waters of the Gulf of Mexico. National Marine Fisheries Service, Southeast Fisheries Centre, Miami Laboratory, CRD 95/96-05, Miami, FL, 125 pp Krebs, C. J. 1985. Ecology: the experimental analysis of distribution and abundance, 3rd ed. Harper and Row, New York

Simpfendorfer, C. A. 1999. Demographic analysis of the dusky shark fishery in Southwestern Australia, p. 149-160. In: Life in the slow lane. Ecology and conservation of long-lived marine animals.J. A. Musick (ed.). American Fisheries Society Symposium 23, Bethesda, Maryland

Lleonart, J., Salat J (1997) VIT: Software for fishery analysis. User's manual. FAO Computerized Information Series (Fisheries), 11, Rome, FAO. 105 pp.

Needle C. L. (2003) - Survey-based assessments with SURBA. Working Document to the ICES Working Group on Methods of Fish Stock Assessment Copenhagen 29 January to 5 February 2003 Abella A., Serena F., Ria M., 2005. Distributional response to variations in abundance over spatial and temporal scales for juveniles of European hake (Merluccius merluccius) in the Western Mediterranean Sea. Fisheries Research, 71: 295–310.

Abella A.J., Serena F., 1998. Selettività e vulnerabilità del nasello nella pesca a strascico. Biol. Mar. Medit., 5 (2): 496-504.

Bartolino V., Colloca F., Sartor P., Ardizzone G., 2008b. Modelling recruitment dynamics of hake, Merluccius merluccius, in the central Mediterranean in relation to key environmental variables. Fisheries Research, 92: 277-288.

Bartolino V., Ottavi A., Colloca F., Ardizzone G.D., Stefánsson G. 2008a. Bathymetric preferences of juvenile European hake (Merluccius merluccius). ICES J. Mar. Sci. 65: 963-969.

Belcari P., Ligas A., Viva C., 2006. Age determination and growth of juveniles of the European hake, Merluccius merluccius (L., 1758), in the northern Tyrrhenian Sea (NW Mediterranean). Fisheries Research., 78: 211-217

Biagi F., Cesarini A., Sbrana M., Viva C., 1995. Reproductive biology and fecundity of Merluccius merluccius (Linnaeus, 1758) in the Northern Tyrrhenian Sea. Rapp. Comm. int. Mer Médit., 34: 23.

Carpentieri P., Colloca F., Ardizzone G.D., 2008. Daily ration and feeding activity of juvenile hake in the central Mediterranean Sea. J. Mar. Biol. Ass. U.K., 88 (7): 1493-1501.

Carpentieri P., Colloca F., Cardinale M., Belluscio A., Ardizzone G.D., 2005. Feeding habits of European hake (Merluccius merluccius) in the central Mediterranean Sea. Fisheries Bulletin US, 103 (2): 411-416.

Colloca F., Belluscio A., Ardizzone G.D., 2000. Sforzo di pesca, catture e gestione dello stock di nasello (Merluccius merluccius) in un'area del Tirreno centrale. Biol. Mar. Med 7(1): 117-129.

Colloca F., Carpentieri P., Balestri E., Ardizzone G.D., 2004. A critical habitat for Mediterranean fish resources: shelf-break areas with Leptometra phalangium (Echinodermata: Crinoidea). Marine Biology, 145: 1129-1142.

Colloca, F., V. Bartolino, G. Jona Lasinio L. Maiorano, P. Sartor and G. Ardizzone.- 2009. Identifying fish nurseries using density and persistence measures. Mar Ecol Prog Ser. 381: 287–296

De Ranieri S., Belcari P., Bertolini D., Biagi F., Chiericoni V., Cognetti A.G., Mori M., Nannini N., Reale B., Rocca V., Sartor P., Sbrana M., 1997. Reclutamento di alcune specie ittiche demersali nel Mar Tirreno Settentrionale. Biol. Mar. Medit., 4(1): 237-243.

Nannini N., Pinna D., Chiericoni V., Biagi F., Belcari P., 2001. Ciclo ovarico di Merluccius merluccius (Linnaeus, 1758) nel mar Tirreno settentrionale. Biol. Mar Medit., 8 (1): 745-748.

Orsi Relini L., Capparena M., Fiorentini F., 1989. Spatial–temporal distribution and growth of Merluccius merluccius recruits in the Ligurian Sea. Observations on the 0-group. Cybium 13: 263–270.

Orsi Relini L., Papaconstantinou C., Jukic-Peladic S., Souplet A., Gil de Sola L., Piccinetti C., Kavadas S., Rossi M., 2002. Distribution of the Mediterranean hake populations (Merluccius merluccius smiridus Rafinesque, 1810) (Osteichthyes: Gadiforems) based on six years monitoring by trawl surveys: some implications for management. Sci. Mar. 66 (Suppl.2): 21-38.

Reale B., Sbrana M., De Ranieri S., 1995. Population dynamics of Merluccius merluccius exploited by two different trawl-nets in the Northern Tyrrhenian Sea. Rapp. Comm. int. Mer Médit., 34: 254.

Sartor P., Carlini F., De Ranieri S., 2003a. Diet of young european hake (Merluccius merluccius) in the northern Tyrrhenian Sea. Biol. Mar. Medit. 10 (2): 904-908.

Sartor P., Sartini M., Reale B., Sbrana M., 2001b. Analysis of the discard practices in the Merluccius merluccius (1, 1758) bottom trawl fishery of the Northern Tyrrhenian Sea. Biol. Mar. Medit. 8(1): 771-774.

Sartor, P., Recasens L., Viva C., Lleonart J., 2001a. Analysis of the impact of the fishery on the adult population of European hake in the Northwestern Mediterranean. Rapp. Comm. Int. Mer Médit., 36: 321-322.

Assessment form

Biology of the species

Code: GME0910A.A

Sheet B

Biology							
Biology	Somatic magnit	tude measu	red (LH, LC	, etc)*	TL	Units*	cm
	Sex	Fem	Mal	Both	Unsexed		
Maximum	size observed					Reproduction season	
Size at firs	t maturity					Reproduction areas	yes
Recruitme	nt size					Nursery areas	yes 150-200m

Parameters used (state units and information sources)

Sex					
Growth model					
Data source	onBertalanf	fy			
L∞ (growth)	64				
K (growth)	0.15				
t0 (growth)	0				
length-weight relationship					
a (length-weight)	0.0025				
b (length-weight)	3.02				
sex ratio	01:01				
Μ	0.2				

Assessment form

General information about the fishery

Code: GME0910A.A

Sheet P1

Data source*	EC Data Collection Regula	ation	Year (s)*	1996-2010
Data aggregation figures between		Monthly		

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ITA	09				GME
Operational Unit 2	ITA	09				GME
Operational Unit 3	ITA	09	E - Trawl (12-24 metres)	03 - Trawls	33 - Demersal shelf species	GME
Operational Unit 4	ITA	09				GME
Operational Unit 5	ITA	09				GME

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
			tons				
ITA 09 E 03 33 - GME		0	10				
Total			10				

Legal minimum size	
--------------------	--

Comments

The blackmouth catshark *Galeus melastomus* is a deep sea species, mainly distributed in t depth range 200-1000m. Locally, the species has a quite low commercial value. The species exclusively caught with bottom trawl nets, mainly as a by-catch of the Norway lobster fish vessels operating within the 250-500m depth range and in red shrimps fisheries in deeper v (up to 800m). Only relatively big-sized individuals are landed.

Other involved species of the Nephrops and Red shrimps fisheriesre Phycis blennoides, Micromesistius potassou, Lepidopus caudatus, Trachurus trachurus, Conger conger, Macrouridae, Etmopterus spinax, Gadiculus argenteus, Parapenaeus longirostris.

Year	2004	2005	2006	
N. of boats	344	358	361	
GT	12.818	12.961	13.191	
kW	74.017	74.606	75.514	
Mean GT	37.3	36.2	36.5	
Mean kW	215.2	208.4	209.2	

Assessment form

Sheet P2a Fishery by Operational Unit

Code: GME0910A.A

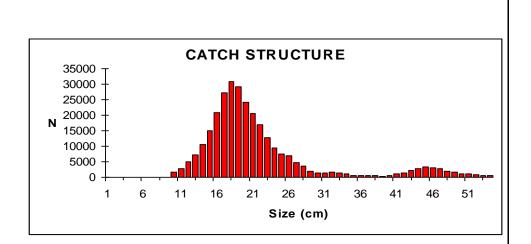
Page 1 / 3

Data source* catch assessment survey EU-(DCF)	OpUnit 1*	
---	-----------	--

Time series

Year*	2004	2005	2006	2007	2008	2009
Catch						
Minimum size						
Average size Lc						
Maximum size						
Fleet	344	358	361			

Year	2010			
Catch				
Minimum size				
Average size Lc				
Maximum size				
Fleet				


Selectivity

Remarks

L25	
L50	
L75	
Selection factor	

Structure by size or age

ngirostris) horned octopus (Eledone cirrhosa), poor cod (Trisopterus minutus capelanus), squids (Illex				
Hake trawl fishery exploits a highly diversified species assemblage: deep sea pink shrimp (<i>Parapenaeus ongirostris</i>) horned octopus (<i>Eledone cirrhosa</i>), poor cod (<i>Trisopterus minutus capelanus</i>), squids (<i>Illex oindetii</i>), are among the most important species in the by catch.	Ainimum landing sizes cod end mesh size of t he existing nets will b vith 50 mm (stretchec owed gears are not a vhen this depth is rea- wo small No Take Zor Siglio Island (50 km2, n	s: EC regulation 1967/2006: 20 trawl nets: 40 mm (stretched, be replaced with a cod end wit d) diamond meshes. Illowed within three nautical r ched at a distance less than 3 nes ("Zone di Tutela Biologica" northern Tyrrhenian Sea) ano	D cm TL for hake. diamond meshes) till 30 h 40 mm (stretched) squ niles from the coast or a miles from the coast. ', ZTB) are present insidu ther off Gaeta, (125 km2	0/05/2010. From 1/6/2010 uare meshes or a cod end at depths less than 50 m e the GSA9; one off the 2, central Tyrrhenian Sea).
	<i>longirostris)</i> horned oc	ctopus (<i>Eledone cirrhosa</i>), poo	r cod (<i>Trisopterus minut</i>	

Assessment form

Fishery by Operational Unit

Code: GME0910A.A Page 3 /

Sheet P2b

Data source*	OpUnit 3*	ITA 09 E 03 33 - GME

Regulations in force and degree of observance of regulations

 Fishing closure for trawling: 30 days in late summer (only enforced some years) Minimum landing sizes: EC regulation 1967/2006: 20 cm TL for hake. Cod end mesh size of trawl nets: 40 mm (stretched, diamond meshes) till 30/05/2010. From 1/6/2010 the existing nets will be replaced with a cod end with 40 mm (stretched) square meshes or a cod end with 50 mm (stretched) diamond meshes. Towed gears are not allowed within three nautical miles from the coast or at depths less than 50 m when this depth is reached at a distance less than 3 miles from the coast. Two small No Take Zones ("Zone di Tutela Biologica", ZTB) are present inside the GSA9; one off the Giglio Island (50 km2, northern Tyrrhenian Sea) another off Gaeta, (125 km2, central Tyrrhenian Sea). In both areas fishing gears operating on the bottom are not allowed six months per year. 	

Accompanying species

Hake trawl fishery exploits a highly diversified species assemblage: deep sea pink shrimp (Parapenaeus
longirostris) horned octopus (Eledone cirrhosa), poor cod (Trisopterus minutus capelanus), squids (Illex
<i>coindetii</i>), are among the most important species in the by catch.

	SAC	GFCN	I - Sub-Con	nmittee on S	Stock Asse	ssment (SCSA)	
Assessment f	form					Indirect method	Sheet A1 s: VPA, LCA
Sex* both]					Code:	GME0910A.A Page 1 / 1
Time series						Analysis # *	1
Data	Size	Age	1	Model	Cohorts	Pseudocohorts	1
(mark with X)	Х		1	(mark with X)	Х		
							•
Equation used					Tunig method		
# of gears		1			Software		

Population results (please state units)

0.4

	Sizes	Ages		Amount	Biomass
Minimum			Recruitment		
Average			Average population		
Maximum			Virgin population		
Critical			Turnover		

Average mortality

F_{terminal}

				Ge	ear		
	Total						
F ₁	0.35	LCA					
F ₂							
Z			-	-	-	-	-

(F1 and F2 represent different possible calculations. Please state them)

Assessment form

Sheet A2 Indirect methods: data

Code: GME0910A.A

Sex*	both	Gear*	bottm trawl=gear 1;	gillnet=gear 2	Analysis # *	1
Data	T (1)	1 (mber of specimens)			

Data

	size	N	s	ze	N
Input data	0			28	3543
	1	0		29	1984
	2	0		30	1503
	3	0		31	1486
	4	0		32	1773
	5	0		33	1521
	6	0		34	1032
	7	0		35	474
	8	0		36	531
	9	0		37	535
	10	1804		38	425
	11	2794		39	326
	12	4949		40	480
	13	7094		41	992
	14	10627		42	1420
	15	15112		43	2274
	16	20745		44	2717
	17	27173		45	3268
	18	30765		46	2918
	19	29136		47	2727
	20	24304		48	2022
	21	20554		49	1655
	22	17070		50	1210
	23	12675		51	1108
	24	9583		52	996
	25	7369		53	690
	26	7068		54	621
	27	4622		55	234

Assessment form

Indirect methods: VPA results

Code: GME0910A.A

Sheet A3

					Page 1 / 1
Sex*	both	Gear*	bottom trawl	Analysis #*	LCA

Population in figures

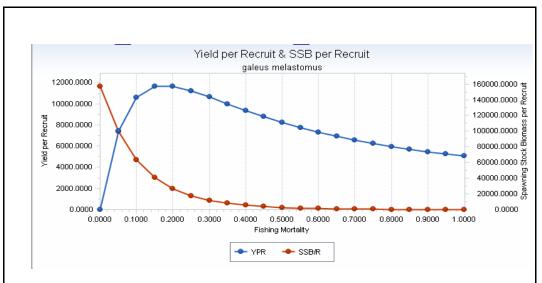
	Prop mature	B year	SSB year	total <u>E year</u>	ind W year	N	C OTB land	C OTB disc	F OTB land	F OTB di
age										
0	0.0	1124651	0	0	0.2	4057932	0	0	0.00	0
1	0.0	16327918	0	0.094668749	4.5	3811847	0	42381	0.00	0
2	0.0	34395926	0	0.669124446	18.2	1980318	0	169748	0.00	0
3	0.0	26989128	0	0.394147657	41.8	657818	0	41316	0.00	0
4	0.0	30841478	0	0.127478777	75.0	429485	0	10290	0.00	0
5	0.0	28206394	0	0.263408346	115.1	256902	1720	1838	0.13	0
6	0.9	30769074	0	0.035118687	159	201208	1274.02095	492	0.03	0
7	1.0	23228457	23228457	0.147909471	200	116771	4685.24105	0	0.15	0
8	1.0	18899539	18899539	0.40216856	246.5	77459.5	8902.46768	0	0.40	0
9	1.0	8338661	8338661	0.518934563	189	28926.3	4748.80272	0	0.52	0
10	1.0	5366028	5366028	0.496056803	327	16438.4	2864.88511	0	0.50	0
11	1.0	3182328	3182328	0.69024561	370	8657.51	2104	0	0.69	0
12	1.0	874218.3	874218.3	0.874338224	400	2169.54	690	0	0.87	0
13	1.0	529530.2	529530.2	0.5	430	1242	621	0	0.50	0
14	1.0				445		0	0	0	0
15	1.0				485		0	0	0	0

Population in biomass

Fishing mortality rates

Assessment form	Indirect	Sheet Y methods: Y/R
Sov. Lat	Code Analysis #	e: GME0910A.A Y/R
Sex both		

Parameters used


Vector F	yes
Vector F Vector M Vector N	
Vector N	

Model characteristics

Results

	Total	Gear				
	Total					
Current YR						
Maximum Y/R						
Y/R 0.1						
F _{max}	0.18					
F _{0.1}	0.13					
Current B/R						
Maximum B/R						
B/R 0.1						
Fref						
F40%SSB	0.1					

Comments

Reference Point Summary Table

Reference Point	F	Yield per Recruit	SSB per Recruit	Total Biomass per Recruit
F Zero	0.00000	0.00000	157286.72604	239593.70248
F-01	0.13000	11384.41293	48843.30212	103172.63998
F-Max	0.18000	11731.46664	31924.86827	78697.92348
Fat 40 % MSP	0.10000	10598.43334	63434.15284	123033.18089

Assessment form

Sheet other

Code: GME0910A.A

Other assessment methods

Page 1 / 1

and fishing mortality rate F. In the figure, the green area represents combinations that define a positive v. r_m . An Fc=0.08 was defined as threshold for the current exploitation pattern. The use of the elasticity analysis made possible to estimate how much vulnerable to changes in the survival of the juveniles (or the adults) depending on the characteristics of the species in question (small or large, slow or fast-growing, long or short-lived species. The results, that allowed a comparison among the consequences (sensitivity) to small changes in fecundity and on the mortality

does not exist. As a complementary it was performed analysis a demographic model that rely primarily on life history

The Leslie Matrix was adapted to include information on fishing mortality at specific ages, or changes in the reproductive schedule. In order to assess how much influence the changes in the used estimates of the vital rates fecundity at age and mortality rates have on the population growth rate, the software allows the performance of sensitivity analyses. In this case, such sensitivity analysis is reported as the elasticity, which is the proportional (relative) change of sensitivity. This choice facilitates the comparisons related to the consequences (impact on the estimates of population growth rate) of small changes in fecundity and on the mortality rates, which are obviously expressed in different absolute scales. Elasticity is calculated from the elements of the transition matrix , the population growth rate (*r*) and the elements of the right and left eigenvectors. While the Leslie matrix was modifi for allowing the inclusion of fishing mortality rates and changes in age of first capture, this allowed the of the values of the rate of population growth growth are obtained with different combinations of age of first capture.

parameters. Such analysis is expected to provide some useful information for management.

rates, derive from standardized information, considering that data are originally expressed in different absolute scales.

Isoplets of the rate of population growth r_m obtained with different combinations of age of first capture L

Assessment form

Sheet D Diagnosis

Code: GME0910A.A

Reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В					
SSB					
F					
Y					
CPUE					
Fmax					
F0.1					
F30%SSE					
ZMBP					

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

	\bigcirc	? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
	\bigcirc	U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in total production;
lal	0	M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
ension	C	F - Fully exploited. The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
Unidimensional	\odot	O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
D	C	D - Depleted. Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
	\bigcirc	R - Recovering. Catches are again increasing after having been depleted or a collapse from a previous;

Exploitation rate		Stock abundance			
0	No or low fishing	0	Virgin or high abundance	-	Depleted
0	Moderate fishing	0	Intermediate abundance	0	Uncertain / Not
\odot	High fishing mortality	۲	Low abundance	\sim	assessed
0	Uncertain / Not assessed				
•	0	 No or low fishing Moderate fishing High fishing mortality 	No or low fishing C Moderate fishing C High fishing mortality C	 No or low fishing Moderate fishing High fishing mortality Low abundance 	O No or low fishing O Virgin or high abundance O O Moderate fishing O Intermediate abundance O • High fishing mortality • Low abundance O

Assessment form

Objectives and recommendations

Code: GME0910A.A

Sheet Z

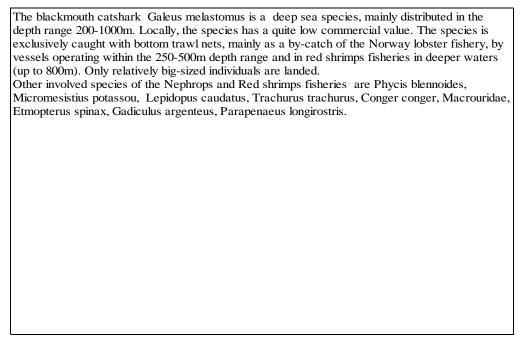
Management advice and recommendations*

The species is considered overexploited, with consistent diagnosis of the current exploitation status obtained with the 2 used approaches aimed at the definition of precautionary Reference Points (Fc = 0.08 and F 0.1=0.13) which values are much lower than the current estimate of fishing mortality rate of F=0.35. The size of first capture is too low (growth overfishing) and an increase in yield and a more safe situation for the stock as regards the possibility of self-renewal can be expected in the case a reduction of fishing effort do occur and/or more selective gears are used

Advice	for s	cientific	research*
/ 10/100			

Assessment form

Sheet C Comments


Code: GME0910A.A Page 1 / 1

Comments*

Most of the assessments have been performed during the Working groups organized by the Scientific Technical and Economic Commission of Fisheries (STECF) of the European Comunity.

Fisheries (brief description of the fishery)*

Source of management advice*

(brief description of material -data- and methods used for the assessment)

A LCA was performed aimed at the estimation of a vector of F-at-size, using data on total annual catches by size for the year 2010, including discards. Considering the availability of only one year of data, it was not possible to perform a formal VPA. The size distribution of the catch for the year 2010 was hence used assuming to be representative of an equilibrium status.

The Y/R analysis allowed to estimate the expected relative yields and surviving fraction of the parental biomass at different mortality rates and to produce an estimate of F0.1 which can be considered a proxy of FMSY.

The age-based Yield per Recruit (YPR) routine, included in the stock assessment toolbox of NOAA was used. It is based on the Thompson-Bell model for estimating the expected lifetime yield and biomass from a cohort subjected to varying levels of fishing mortality.

A demographic analysis was used for the definition of the status of the stock regarding its capacity of self-renewal (Caswell, 1989).

A Leslie Matrix was adapted to include information on fishing mortality at specific ages, or changes in the reproductive schedule.

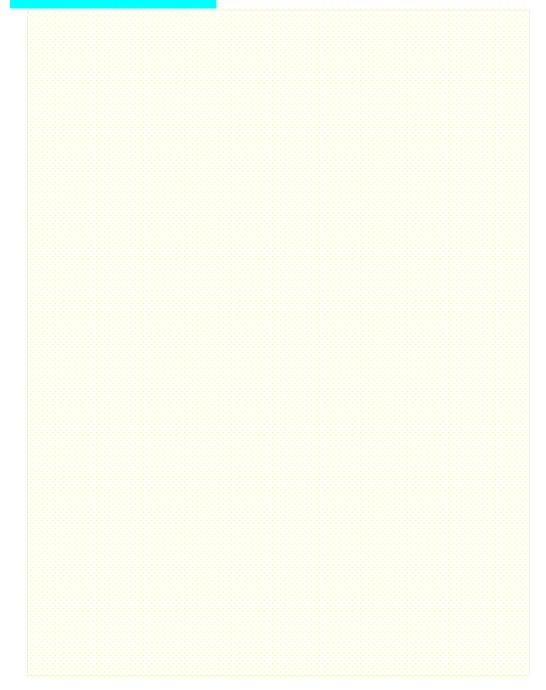
Elasticity analysis allowed identifying the ages at which smallest changes in vital rates can produce biggest changes in the population growth rate. Elasticity analysis allows defining the management choices likely to produce more benefits to the stock, by estimating how much vulnerable is the species to changes in the survival of the juveniles (or for the adults)

Stock Status*

O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;

Exploitation rate

Stock abundance


Low abundance

High fishing mortality

Management advice and recommendations*

Advice	for	scientific	research*

