SAC GFCM Sub-Committee on Stock Assessment

Date*	16	October	2011	Code*	ARA0511Car					
		Authors*	Carbo	onell, A., Guijarro, E	3., Gaza, M., Ordines, F.					
		Affiliation*	Instituto Español de Oceanografía. Centro Oceanográfico de Baleares. Muelle de Poniente s/n. 07015 Palma. Islas Baleares. Spain							
Speci	Species Scientific name*			Aristeus antennatus Source: GFCM Priori	- ARA ty Species					
			2	Source: -						
			3	Source: -						
	Geogra	phical area*	FAG	D 37.1.1						
Geo Combir	ographic	cal Sub-Area (GSA)* f GSAs 1 2 3	05	- Balearic Island						

SCSA Assessment Forms

Assessment form

Sheet #0

Basic data on the assessment

Code: ARA0511Car

Date*	16 Oct 2011	Authors*	Carbor	iell, A	۱., (Guij	arro	, B.	, Ga	za,	М.,	Ord	lines	, F.				

Species	Aristeus antennatus - ARA	Species	Red shrimp, Crevette rouge, Gamba roja
Scientific		common	
name*		name*	

Data Source

GSA*	05 - Balearic Island Period of time*	1992-2010

Description of the analysis

Type of data*	Monthly size distribution, and year-age classes matrix. CPUE of Trips landing	Data source*	Fishery Department local authorities and DCR data sampling IEO programme.		
	by vessel, and monthly fleet landings				
Method of assessment*	LCA, Separable VPA, XSA, Yield per Recruit analysis	Software used*	VIT (Lleonart and Salat, 1997) VPA-XSA (Darby and Flatman, 1994)		

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	С
1	1		1		2	1	4	1		1	1	1

Comments, bibliography, etc.

Lleonart, J., and J. Salat. 1997. VIT: Software for fishery analysis--. User's manual FAO Computerized information Series (Fisheries) N° 11. Rome, FAO. 1997. 105 p.

Darby, C. and D. Flatman. 1994. Virtual Population Analysis: version 3.1. (Windows/Dos) user guide. Infor. Tech. Ser., MAFF Direct. Fish. Res., Lowestof (1):85 pp.

Carbonell, A., M. Carbonell, M. Demestre, A. Grau, S. Monserrat. 1999. The red shrimp Aristeus antennatus (Risso, 1816) fishery and biology in the Balearic Islands, Western Mediterranean. Fisheries Research 44.1-13.

Carbonell A, Azevedo, M. 2003. Application of non-equilibrium production models to the red shrimp (Aristeus antennatus, Risso 1816) fishery in the North-western Mediterranean.). Fisheries Research 65, 323-334.

Carbonell, A., A. Grau, V. Lauronce, C. Gómez. 2006. Ovary Development Of the Red Shrimp Aristeus antennatus from Northwestern Mediterranean Sea.Crustaceana 79(6).727-743 (2006).

Carbonell, A., Lloret, J., Demestre, M. 2007. Relationship between condition and recruitment success of the red shrimp (Aristeus antennatus) in the balearic sea (Northwestern Mediterranean). Journal of Marine Systems 71 (2008) 403-412.

Comments, bibliography, etc.

Assessment form

Sheet B Biology of the species

Code: ARA0511Car

Diology							
Diology	Somatic magnit	ude measu	red (LH, LC	, etc)*	LC	Units*	mm
	Sex	Fem	Mal	Both	Unsexed		
Maximum	size observed	66	38	66		Reproduction season	April_September
Size at firs	t maturity	21	26	24		Reproduction areas	GSA 5
Recruitme	nt size	13-22	15-18	13-22		Nursery areas	GSA 5

Parameters used (state units and information sources)

				S	ex		
		Units	female	male	both	unsexed	
	L∞	CL mm	75.5	42	75.5		
Growth model	К	mm/month	0.249	0.422	0.285		
Glowin model	tO		-0.3936	-0.65	-0.4533		
	Data source	Carbonell et al., 1999					
Length weight	а		0.00244	0.00246	0.00243		
relationship	b		2.4536	2.4311	2.4401		
	М		0.363	0.518	0.363		

sex ratio (mal/fem) 25/75

Comments

Aristeus present different growth and sexual maturity for females and males. The majority of landings are females dominated (70~75%)

Following the recomendation of 2010 SAC committee assessment was made:

1) by sex: females and males separated, afterwards results summed

2) by total: population (females and males together)

3) by Sex_combined (age matrix by sex have been summed and afterward separable VPA and XSA were made)

Results showed differences for the first option (VPAs by sex separated). The reason could be in the males age matrix composition, since it was composed by 0-4 ages, although for the last age have low number of individuals in almost all years. The main differences have been done in the recruitment estimations that double those obtained for sex_combined and total population.

Tunning have been done with fleet Palma port for all years, and with MEDITS survey data for the years 2001-2010.

The main results presented were for Separable VPA and XSA age matrix of Sex_combined data tuning with Palma harbour fleet and MEDITS survey 2001-2010 data. For LCA and Y/R data corresponded to the average size distribution by sex and total for the 2005-2010 years.

Assessment form

Sheet P1 General information about the fishery

Code: ARA0511Car

Data source*	Govern Autonomus Balear	ic Islands, Fishery Department	Year (s)*	1992-2010
Data aggregation	on (by year, average n years, etc.)*	Annual agregation by year, and ave	erage of all years	

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ESP	05	E - Trawl (12-24 metres)	03 - Trawls	34 - Demersal slope species	ARA
Operational Unit 2						
Operational Unit 3						
Operational Unit 4						
Operational Unit 5						

Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
34	Tons	164		0.00%	17%	trips
34		164		0.00001	0.17	
	Fleet (n° of boats)* 34	Fleet (n° of boats)*Kilos or Tons34Tons	Fleet (n° of boats)*Kilos or TonsCatch (species assessed)34Tons16444454464476477687697697610164	Fleet (n° of boats)*Kilos or TonsCatch (species assessed)Other species caught34Tons164456747777777777777777777777777777777777-<	Fleet (n° of boats)*Kilos or TonsCatch (species assessed)Other species caughtDiscards (species assessed)34Tons1640.00%34Tons1640.00%34III34III34III34III	Fleet (n° of boats)*Kilos or TonsCatch (species assessed)Other species caughtDiscards (species assessed)Discards (other species caught)34Tons1640.00%17%34Tons1640.00%17%100Internet InternetInternet InternetInternet InternetInternet Internet34Internet InternetInternet InternetInternet InternetInternet Internet34Internet InternetInternet InternetInternet InternetInternet34Internet InternetInternet InternetInternet InternetInternet Internet

Legal minimum size None

Sheet P1 (page 2)

Assessment form

Sheet P2a Fishery by Operational Unit

Code: ARA0511Car

Page 1 / 1

Data source*	Autonomous Govern. Fishing statistics. IEO	OpUnit 1*	ESP 05 E 03 34 - ARA

Time series

Year*	1999	2000	2001	2002	2003	2004
Catch	93	100	145	141	115	140
Minimum size	15	15	15	17	15	13
Average size Lc	27.25	29.02	30.13	31.34	31.98	29.05
Maximum size	65	63	65	61	64	64
Fleet	22	22	23	20	24	16

Year	2005	2006	2007	2008	2009	2010
Catch	172	164	141	149	140	164
Minimum size	15	17	15	17	13	15
Average size Lc	29.49	30.57	33.1	33.31	31.12	29.1
Maximum size	62	62	58	64	65	61
Fleet	16	16	16	17	17	17

Selectivity

Remarks

L25	
L50	
L75	
Selection factor	

Structure by size or age

Structure by size or age

Assessment form

Sheet P2b Fishery by Operational Unit

> Code: ARA0511Car Page 1 / 1

Data source*	Autonomous Govern. Fisheries statistics. IEO	OpUnit 1*	ESP 05 E 03 34 - ARA

Regulations in force and degree of observance of regulations

Fishing license: fully observed

Engine power limited to 500 HP: not fully observed

Fishing forbidden at < 50 m depth: fully observed

Time at sea 5 days a week during 12 hours at sea: fully observed

Mesh size in the codend (square 40 mm or 50 mm diamond with derogation): fully observed

EC Regulations:

The minimum mesh size of all bottom gear may not be less done 40 mm (EC Regulation 1967/2006). In addition trawling activity cannot be performed within 3 miles off the coast, where sea bed is less than 50 m depth.

Minimum landings sizes have been established for the most important commercial specises, although there is not a minimum landing size for the red shrimp according to EC Regulation 1967/2006, which has replaced the previous EC Regulation 1626/94.

The use of towed dredges and trawl nets is at depth beyond 1000 m prohibited (EC Regulation 1967/2006) ational Regulations:

Effort regulations (APA/254/200) authorised trawls fishing 5 days a week during 12 hours at sea

Accompanying species

- Red Shrimp bottom trawl main accompanying species are listed below:

European hake (*Merluccius merluccius*) -Black mouth catshark (*Galeus melastomus*) -Pandalid shrimps (*Plesionika spp. Pasiphaea*) -Giant red shrimp (Aristaeomorpha foliacea) -Crabs (*Macropipus tuberculatus, Geryon longipes*) -Megrims (*Lepidorhombus spp.*) -Seabreams (*Pagellus acarne*) -Siver scabbard fish (*Lepidopus caudatus*) -Anglerfish (*Lophius spp.*) -Blue-whiting (*Micromesistius poutassou*) -Greater forkbeard (*Phycis blennoides*) -Rockfish (*Helicolenus dactylopterus*) -Conger eel (*Conger conger*)

Assessment form

Sheet A1

Indirect methods: VPA, LCA

Sex* Total

Code: ARA0511Car

Analysis # *

Page 1 / 2

LCA/VPA

Time series

Data	Size	Age
(mark with X)	Х	

Model	Cohorts	Pseudocohorts
(mark with X)		Х

Equation used	Capture	Tunig method	
# of gears	1	Software	VIT (Lleonart and Salat, 1997)
F _{terminal}	2		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	13	0	Recruitment	23.46 millions	29.79 t
Average	24.46	0.978	Average population	24.72 millions	179.34 t
Maximum	66	5+	Virgin population		1271.49 t
Critical	27	1.1	Turnover		

Average mortality

		Gear				
	Total					
F ₁	0.586					
F ₂	1.36					
Z	0.949					

(F1 and F2 represent different possible calculations. Please state them)

Total Recruitment	Biomass (g)	Percentage
Crowth	29793238.13	12.83
Glowin	201995504.8	87.13
Natural death	65100350.99	28.09
Fishing	166688212	71.91
R/B(mean)	16.61	
D/B(mean)	129.25	
B(max)/B(mean)	51.48	
B(max)/D	39.83	

Sheet A1

Indirect methods: VPA, LCA

Females

Assessment form

Code: ARA0511Car

Analysis # *

Page 2 / 2

LCA/VPA

Time series

Sex*

Data	Size	Age
(mark with X)	Х	

Model	Cohorts	Pseudocohorts
(mark with X)		Х

Equation used	Capture	Tunig method	
# of gears	1	Software	VIT (Lleonart and Salat, 1997)
F _{terminal}	2		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	13	0	Recruitment	16.97 millions	31.83 Tn
Average	27.342	1.49	Average population	23.03 million	224.93 Tn
Maximum	66	5+	Virgin population		1039.33
Critical	30	1.64	Turnover		

Average mortality

		Gear					
	Total						
F ₁	0.374						
F ₂	1.087						
Z	1.45						

(F1 and F2 represent different possible calculations. Please state them)

Biomass (g) 31830273 46	Percentage 14.28
191061981.7	85.72
81647891.11	36.63
141244364	63.37
14.15	
99.1	
41.62	
42	
	Biomass (g) 31830273.46 191061981.7 81647891.11 141244364 14.15 99.1 41.62 42

Sheet A1 Indirect methods: VPA, LCA

Analysis # *

Sex* Males

Assessment form

Code: ARA0511Car

Page 3 / 2

Time series

Data	Size	Age
(mark with X)	Х	

Model	Cohorts	Pseudocohorts
(mark with X)		Х

Equation used	Capture	Tunig method	
# of gears		Software	Vit4win
F _{terminal}	2		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum	13	0	Recruitment	6.94 millions	12.35 Tn
Average	20.97	1.04	Average population	6.30 millions	27.03 Tn
Maximum	38	4+	Virgin population		96.37 Tn
Critical	21	0.99	Turnover		

Average mortality

			Gear				
	Total						
F ₁	0.584						
F ₂	1.531						
Z	1.102						

(F1 and F2 represent different possible calculations. Please state them)

Males	Biomass	Percentage
Recruitment	12351455.12	33.2
Growth	24853273.69	66.8
Natural death	13975981.96	37.57
Females	Biomass	Percentage
Recruitment		-

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Assessment form Sheet A2 Indirect methods: data Code: ARA0511Car Sex* Sear* Trawl Analysis #* Separable VPA

Sex*	Sex_combine	Gear*	Trawl	Analysis # *	Separable VPA
Data source	1992-2010 ye	ars			

Data

Quality o was run a length dis The catch Sex_com Palma ha	f data and in a single VPA stributions fo a-at-age for t bined data. E rbour referer	puts: Length of males and or year (1992- he two sexes Effort in days nee fleet. and	frequency data for l females combined, 2010) were split us were then summed represent effort trip BALAR_MEDITS	andings are available o using VPA package. ing L2Age, slincing IC to do a separable VPA os. Tuning data series Surveys	n a monthly The male and ES package and XSA fo was made us	basis. It I female to ages . r ing the	
PARAMETE	Females	Males	Total	Modal Age (Females	Males	Total
Linf	75.5	42	75.7	Edades	1 01110100		1000
K	0.249	0.422	0.285	0	22.1	22	22.1
to	-0.3936	-0.65	-0.45326	1	33.9	29.6	33.9
а	0.00244	0.00246	0.002426	2	43.1	34.6	43.1
b	2.4536	2.4311	2.4701264	3	50.2	37.8	50.2
L50	26	21	21	4	55.8		55.8
М	0.363	0.517	0.517	5	60.1		60.1
				6	63.5		63.5
				GRUPO PLU	6+	3+	5+
Ft = 0.5 St = 1.2 Initial after 5 Selecti	5 2 sum of squa 56 iterations on at age 2	ared residua	als was 105.197 a	nd final sum of squa	red residua	ls is 12.69	6
Г			Sep VPA log ca	tch ratio residuals			
							1
	1.5						
	1.5						
	1.5			X			

5

8 9

1

19 20

log residuals

0

-0.5

-1

-1.5

Sheet A3

Indirect methods: VPA results

Code: ARA0511Car

_					Page 1/4
Sex*	x_combir	Gear*	Trawl	Analysis #*	Sep VPA /XSA fleet Palma

Population in figures

Assessment form

VPA sep	RECR	Year	RECRUITS	XSA Fle	RECRUI	Year	RECRU	XSA Sui	RECRUI	Year	RECR
1992	41787	2004	33980	1992	43677	2004	35505	1992	43295	2004	34838
1993	30743	2005	30852	1993	32140	2005	32549	1993	31837	2005	31401
1994	28045	2006	24688	1994	29542	2006	25915	1994	29054	2006	24383
1995	23274	2007	28765	1995	25182	2007	28858	1995	24106	2007	26415
1996	20465	2008	30702	1996	21880	2008	28408	1996	21247	2008	23846
1997	22936	2009	55447	1997	24622	2009	34508	1997	23667	2009	33721
1998	29886	2010	70250	1998	31504	2010	30230	1998	30882	2010	29237
1999	32021			1999	33761			1999	32900		
2000	28158			2000	30011			2000	28986		
2001	23395			2001	25022			2001	24097		
2002	21716			2002	23635			2002	22315		
2003	30670			2003	31939			2003	31478		

Population in biomass

VPA sep	TOTALB	Year	TOTALBIO	1	XSA Flee	ГОТАLВ	Year	ГОТАLE	XSA Sui	TOTA	Year	TOTALB
1992	601	2004	388		1992	626	2004	402	1992	608	2004	393
1993	510	2005	432		1993	533	2005	446	1993	514	2005	394
1994	455	2006	437		1994	477	2006	446	1994	456	2006	379
1995	334	2007	377		1995	349	2007	373	1995	326	2007	360
1996	291	2008	384		1996	305	2008	352	1996	284	2008	322
1997	229	2009	479		1997	240	2009	360	1997	218	2009	313
1998	242	2010	704		1998	252	2010	388	1998	236	2010	353
1999	312				1999	324			1999	302		
2000	381				2000	396			2000	363		
2001	373				2001	389			2001	365		
2002	348				2002	363			2002	345		
2003	337				2003	351			2003	325		

Fishing mortality rates

VPA sep	FBAR 2-	Year	FBAR 2-4	XSA Flee	FBAR 2-	Year	FBAR 2-	XSA sur	FBAR	Year	FBAR 2-
1992	1.2657	2004	0.8496	1992	0.8723	2004	0.4904	1992	1.2407	2004	0.8305
1993	1.2063	2005	1.4092	1993	0.8664	2005	0.6595	1993	1.1764	2005	1.3812
1994	1.1452	2006	0.962	1994	0.7987	2006	0.5362	1994	1.1283	2006	0.9691
1995	1.2683	2007	0.766	1995	0.8786	2007	0.4839	1995	1.2372	2007	0.7816
1996	1.1268	2008	1.0192	1996	0.7537	2008	0.6674	1996	1.1022	2008	1.1227
1997	1.2999	2009	0.9732	1997	0.7345	2009	0.5898	1997	1.2591	2009	1.4255
1998	1.0912	2010	0.5064	1998	0.5359	2010	0.4621	1998	1.0762	2010	1.3298
1999	0.5099			1999	0.322			1999	0.4905		
2000	0.9763			2000	0.5235			2000	0.9045		
2001	0.8468			2001	0.4881			2001	0.8106		
2002	0.8217			2002	0.5185			2002	0.7963		
2003	0.9784			2003	0.5178			2003	0.9708		

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)									
٨٩٩٩	semont fo	rm				Sheet A3			
A336.	soment to				Indired	ct methods: VPA results			
						Code: ARA0511Car Page 2/4			
Sex*	Sex_co	Gear*	Trawl		Analysis #*	XSA Tuning Fleet			

Population in figures

Population in biomass

Fishing mortality rates

Assessment form

Sheet A3 Indirect methods: VPA results

Code: ARA0511Car

					Page 3/4
Sex*	Sex_co	Gear*	Trawl	Analysis #*	XSA Fleet tuning

Population in figures

чвс	Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Log q	t Test
0	1.34	-0.146	13.73	0.02	19	1.08	-12.85	0.88563864
1	1.28	-0.255	9.71	0.08	19	0.59	-9.73	0.80178243
Ages with q	independent	of year class	strength and	constant w.r.	.t. time.	Regse	Mean O	
190	Stope	t value	mercept	noquare	1101113	1105 5.0	Mean Q	
								0.20220020
2	5.03	-1.064	10.06	0.01	19	2.74	-9.04	0.30220926
2	5.03 6.78	-1.064 -1.66	10.06 10.55	0.01	19 19	2.74	-9.04 -8	0.30220926
2 3 4	5.03 6.78 4.02	-1.064 -1.66 -1.636	10.06 10.55 10.01	0.01 0.01 0.03	19 19 19	2.74 3.34 1.79	-9.04 -8 -7.33	0.30220926 0.11524625 0.12021761

Population in biomass

Age	1992	1993	1994	1995	1996	1997	1998	1999	2000	200
0	0.44	0.17	-0.38	-1.19	-0.38	0.58	0.05	0.62	0.58	-0.8
1	0.42	0.34	0.23	0.18	0.32	0.7	0.57	0.23	0.31	-0.9
2	0.41	0.68	0.01	0.54	0.73	0.67	0.89	0.65	0.01	-0.6
3	0.6	0.4	0.48	0.34	0.82	0.32	0.48	0.76	0.02	-0.2
4	0.92	0.83	0.61	-0.01	0.54	0.01	0.21	0.09	0.13	-0.3
5	1.8	1.7	1.71	-0.24	1.03	0.38	0.61	0.64	0.16	0.3
A.g.o.	2002	2002	2004	2005	2006	2007	2008	2009	2010	
0	0.03	0.28	-0.95	0.67	1.25	-2.51	0.33	-0.14	1.05	
1	0.2	0.23	0.23	0.34	0.39	-0.21	-1.36	-0.17	0.09	
2	0.07	0.3	0.02	0.34	-0.01	-0.33	-1.24	-0.27	0.24	
3	-0.06	-0.34	-0.06	0.28	-0.02	-0.35	-1.25	0.11	0.66	
4	0.04	-0.38	0.06	0.3	0.06	0.13	-1.3	0.32	0.46	
5	0.53	0.24	0.29	0.64	0.8	0.35	-0.44	1.1	0.74	

Fishing mortality rates

The log catchability residuals for the fleet (1992-2010) were lower than surveys time series (2001-2010). Residual show change of the pattern of explotation between 2008 and 2010. The Q plateau was not achieved for mean log catchability and standard error of last age.

Regression analysis for the ages with catchability dependent on year class strength shows there is no significant differences from 1. Therefore catchability could be considered constant with respect to population abundance (direct proportionality) for all ages.

SAC	GFCM -	Sub-C	ommittee	on Stock	< Assessme	nt (SCSA)	
Assossment form							Sheet A3
ASSESSMENTION					• • • • • • • • • • • • • • • • • • • •		

Indirect methods: VPA results

Code: ARA0511Car

					Page 4/4
Sex*	Sex_co	Gear*	Trawl	Analysis #*	XSA fleet tuning

Population in figures

XSA: Tuning Fleet Palma harbour :1992-2010 Total absolute residual between iterations 109 and 110 = .00045 Age range: 0-7; Classe plus 5+ First age for normal catchability independ analysis: Age class 2 First age at which q is considered independent of age: Age class 2 Tape time weighting applied? YES, Tricubic over 20 years F shrinkage: YES; YEAR RANGE = 5 Population shrinkage: YES AGE RANGE = 3-5 Minimum Log SE for terminal population estimates: 1.0 TUNING SURVEY: MEDIT_BALAR; Year range: 2001-2010 Tuning converged after 11 iterations Age range: 0-7; Classe plus 5+ First age for normal catchability independ analysis: Age class 2 First age at which q is considered independent of age: Age class 2 Tape time weighting applied? YES, Tricubic over 20 years F shrinkage: YES; YEAR RANGE = 5 Population shrinkage: YES AGE RANGE = 3-5 Minimum Log SE for terminal population estimates: 1.0

Population in biomass

Log catc	hability	residuals.									
Fleet : S	Survey										
Age		2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
	0	-0.37	-0.94	-0.9	-1.11	0.45	0.24	0.81	-0.15	0.26	1.29
	1	-0.29	-0.36	-0.14	-0.42	-0.01	-0.13	0.27	0.09	0.3	0.5
	2	0.49	1.67	1.49	0.51	-0.9	-0.44	-0.28	0.55	-0.05	-2.45
	3	0.92	1.59	1.49	1.1	-1.01	-0.69	-1.13	0.42	0.09	-2.08
	4	1.26	1.68	0.64	2.03	-1.17	-0.2	-1.9	-0.09	0.01	-1.49
	5	1.28	1.66	-0.4	1.98	-1.01	-0.08	-0.66	-0.38	0.11	-1.83
	6	99.99	99.99	-2.6	99.99	-2.85	99.99	99.99	-2.07	-0.75	99.99

Fishing mortality rates

Age	Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Log q	T test							
0	-0.66	-0.893	14.41	0.04	10	0.85	-3.9	0.39792313							
1	-0.31	-2.053	11.62	0.25	10	0.33	-3.72	0.07416189							
Ages with q	independent	of year class	strength and	constant w.r.	.t. time.										
Age	Slope	t-value	Intercept	RSquare	No Pts	Reg s.e	Mean Q								
2	-3.36	-0.438	27.2	0	10	4.26	-3.23	0.67297184							
3	0.44	0.666	5.22	0.16	10	0.57	-2.4	0.52414678							
4	0.49	0.807	4.02	0.26	10	0.67	-1.81	0.44299543							
5	0.49	1.183	2.63	0.42	10	0.57	-0.39	0.27077086							
6	1.28	-0.136	2.2	0.11	4	1.51	-2.43	0.89518125							

SAC GFCM - Sub-Committee on	Stock Assessment (SC	SA)
Assessment form		Sheet Y
Assessment form	Indire	ect methods: Y/R
	CG	de: ARA0511Car
Sex alles and Males	Analysis #	1
		-

# of gears	Software	Vit4win

Parameters used

Vector F	1
Vector M	0.363
Vector N	1

Model characteristics

Yield per Recruit analysis were made by sex, assuming the current steady state exploitation pattern for the period 2005-2010. Results of equilibrium landings and SSB/R estimated the current exploitation close to the maximum.

Results

	Total		Gear							
	TOTAL	Females	Males							
Current YR	7.104	8.321	3.345							
Maximum Y/R	8.199	8.54	3.346							
Y/R 0.1	7.772	7.854	2.992							
F _{max}	0.41	0.64	1.08							
F _{0.1}	0.25	0.31	0.38							
Current B/R	7.644									
Maximum B/R	17.637									
B/R 0.1	24.738									

Assessment form

Sheet D Diagnosis

Code: ARA0511Car

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В	388	Tn			
SSB	388	Tn			
F	1.054				
Y	7.104	g			
CPUE	32.89	Kg/Trij	р		

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

	\bigcirc	? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
	C	U - Underexploited , undeveloped or new fishery . Believed to have a significant potential for expansion in total production;
	С	M - Moderately exploited , exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;
ional	C	F - Fully exploited . The fishery is operating at or close to an optimal yield level, with no expected room for further expansion;
nidimens	0	O - Overexploited . The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
	C	D - Depleted . Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
	C	R - Recovering . Catches are again increasing after having been depleted or a collapse from a previous;

	Exploitation rate	Stock abundance
nal	No or low fishing	O Virgin or high abundance O Depleted
sio	Moderate fishing	O Intermediate abundance Uncertain / Not
nen	 High fishing mortality 	Low abundance assessed
din	O Uncertain / Not assess	
Bi	-	

The stock is in overfishing status.

The XSA log catchability residuals are over 0.5 for the age 0 for almost all years and for the last age only for 1991-1994, 1996 and 2009. The youngest age classes are only partially recruit to the fishery (low abundance of age 0). Residual show change of the pattern of explotation between 2008 and 2010. The highest residuals was -2.51 for age 0 in 2007 and the lowest residuals was 0.01 for the age 2 in 1994 and 2001 years. The two tuning, fleet and survey, give similar estimates of survivors and have the similar weight in the F-at-age values. Total Biomass decreased from 550 tn (1992) to around 250 tn (1998), increasing from them until 2002, and decreasing again from 500 tn to 300 tn in 2006, afterwards biomass estimates are around 400 Tn. For the lasts assessment Fishing effort fluctuated around the similar values. The log catchability residuals for the surveys time series (2001-2010) were higher than those obtained from the fleet. The final XSA was tuned with the Palma harbour fleet.

Assessment form

Objectives and recommendations

Code: ARA0511Car

Sheet Z

Management advice and recommendations*

The last year recommendation to do not increase the effort continue for this year. Landings for 2010 still decreasing catches for males and increasing for females. The VPAs and XSAs of 2009 and 2010 assessments have been changed the F estimation from 1 to 0.5 (corr. coef with effort trip = 0.30) and Selection at age from 1 to 1.2 (better Q plateau). Tuning log catchability residuals was lower for the Palma fleet, although there was small differences in estimates for both tunings XSA models. Spawning Stock Biomass showed a sligth increase, while Recruitment and Fishing mortality showed a slight decrease for the last year. Correlation coefficients for regression points of the XSA catchability model were very low (close to 0) which make difficult to fit catchability model. The slopes of regression model are not significantly different from 1 for all ages (no direct proportionality) and slopes are negative (with the meaning of increasing catchability with decreasing population abundance). Yield per Recruit model at F0.1 recomend effort reduction. Since the mean size and landings appear close to the mean values for the whole time series, the monitoring of the fishery should continue carefully looking for the progress of the fishery. By the other hand complementary management measures will be provided like temporal fishing time reduction for some periods like at the beginning of the reproduction or spawning period and during the recruitmet period at the beginning of autumn which could have a beneficious effect in the overall red shrimp population.

Advice for scientific research*

Assessment form

Sheet C Comments

Code: ARA0511Car Page 1 / 1

Comments*

The available proxies of Fmax and F0.1, correspond to reductions in F of about 60-70% at the current level at F status, improvement in selectivity pattern would be a improvement on the yields and mean size of fishing. The recently applied change in the mesh size may be detected in the next estimates of the future assessments. However, not all the fleet uses the square 40 mm mesh size, as some use (by derogation) the 50 mm diamond. This is the year which marks the shift in the mesh type.

Abstract for SCSA reporting

Authors Carbonell, A.,	Guijarro, B., Gaza, M., Ordines, F. Year 2011
Species Scientific name	Aristeus antennatus - ARA Source: GFCM Priority Species
	Source: -
	Source: -
Geographical Sub-Area	05 - Balearic Island

Fisheries (brief description of the fishery)*

Bottom trawl fleet fishing effort of the Majorca Island were quite stable for the period studied. Around 35 vessels operated in the area, whose lengths are between 12- 24 m. The cod end mesh size used was a diamond 40 mm of mesh opening until Jun 1st 2009, when (following EC Regulation) it was changed to a square 40 mm of mesh opening or (by derogation) to a 50 mm diamond mesh. The slope fishery employ the 60% of the trawl fleet in the Balearic Islands, doing daily trips mostly with an unique haul directed to the red shrimp, with a duration between 5 and 7 hours.

Source of management advice*

(brief description of material -data- and methods used for the assessment)

The Separable VPA and XSA were made for the Annual Catch at Age for females and males summed to obtain the final Sex_combined matrix. The LCA (Pseudocohort analysis) was made for the average Cefalotorax length (CL mm) size distribution for the years 2005-2010, for females, males and total.

Software used:

Separable VPA and Extended Survivor Analysis (XSA) ((Darby and Flatman, 1994)) Pseudocohort analysis and Yield per Recruitm using VIT (Lleonart and Salat, 1997)

Complementariy data used were:

- 1- Time series of landings (1978-2010)
- 2- Time series cpues (Kg/day~trip) (1992-2010)

3- Total days effort fleet.

Stock Status*

Exploitation rate	Stock abundance							
oderate fishing mortality	Low abundance							
omments								
an storde is an exectisitance spector.								

Management advice and recommendations*

Advice for scientific research*