Is the science lost at sea? Case studies from Australia

Marine Park Planning and Recreational Fishing

Author: Daryl McPhee, Bond University (Australia) presented by Oscar Sagué Pla (FEDAS)

Management of marine ecosystems

- Spatial management through marine reserves → Highly contentious.
- Benefits for biodiversity conservation and fisheries management → Not universal
- Influences:
 - Biology and ecology of individual species.
 - Fisheries management regime (enforcement).
 - Anthropogenic impacts on the marine environment.

Marine reserves

FEDAS

- Institutional and societal issues:
 - Meaningful participation in design, management and monitoring.
 - Dislocation and displacement of fishers.
 - Costs and benefits of marine reserves and their distribution.
 - Governance arrangements.
 - Nature of existing access rights.

- Since 1991 → NRSMPA.
- Aim \rightarrow Biodiversity protection.
- Highly protected areas → Fishing activities prohibited.
- Consequence → Conflict (public rallies, government inquires).
- 19,5% population (2003)
- Estuaries and inshore coastal waters.
- Annual expenditure: \$1.85 billion (2001/2002)

Main points of contention

- Costs poorly understood by marine park planners, poorly assessed or not assessed at all.
- Benefits overstated and not necessarily of local relevance.
- MR not mitigate against a large number of non-fishing hazards and risks.
- Lack of opportunity for meaningful input.

Costs and benefits of MR for RF

- MR historically promoted by biologists/ecologists with little input from economists or social scientists (Smith and Wilen (2003)).
- Literature focused on benefits.
- RF consider MR to result in costs.
 - Loss of fishing access.
 - Overcrowding in areas remaining open.
- Costs are tangible and immediate while the benefits are less tangible and may be longer term (if they occur at all).
- No detailed RF cost-benefit analyses.

Cost-benefit analyses

Costs

- General terms.
- Not identified as significant or persistent.
- Benefits
 - Increased spillover.
 - Enhanced fish stocks and fish habitats.

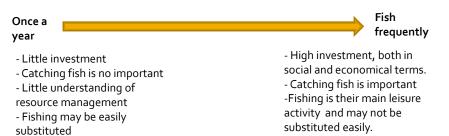
The Spillover Effect

- Benefits of MR (increased biomass, species richness, average size...) are not universal (Jones et all. 2004).
- Not sufficient in itself.
- Spillover of adult fish or eggs and larvae.
- Adult fish
 - Marine reserve size.
 - Density dependent effects (Le Quesne and Codling, 2009; Moffit et al., 2009; Miethe et al., 2010; Kellner et al., 2010).
 - Body size, habitat, depth range, schooling behaviour (Claudet et al., 2010)
 - Limited spatially to 100s meters from MR boundary (Russ, 2004; Halpern et al., 2010).
 - Adult spillover too large → No biodiversity outcomes (Mora et al., 2006; Miethe et al., 2010)

The Spillover effect

- Eggs and larvae
 - Fished species must reproduce within the MR.
 - Magnitude of egg and larval spillover is extremely difficult to assess empirically.
 - Spawning stock-recruitment relationship → Asymptotic (Penn and Fletcher, 2010).
 - Individual biology of the species, hydrodynamic factors, environmental quality within and adjacent to MR and the fisheries management regime.
- Conclusion → Broad statements of benefits to RF through spillover effects is an oversimplification.

Impact of MR on Recreational Fisheries


- Heterogeneity of recreational fishers.
- Reasons diverse → Catch and non-catch motivations.
- Recreational fishing sub-sectors (methods, motivations, investment, frequency and spatial distribution).

Recreational specialisation

 Costs and benefits will not be spread evenly through the recreational fishers population.

Impact of MR on Recreational Fisheries

-Locations that maximize satisfaction level may be very limited or in fact unique

- Disproportional
 - Limited ability to respond to change and spatially adapt their fishing activities (younger/older, physical disabilities, financial hardship).
 - Those with the most to lose and least able to adapt spatially to change to achieve the same or similar satisfaction levels from their preferred leisure activity.
- Incorporation of specialisation theory into studies of RF and MR.
- Ability of recreational fishers to adapt spatially needs to be considered.

Mitigation of environmental hazards and risks

- Marine reserves → Mitigate fishing.
- Other hazards and risks (Bailey at al., 2000; Boesch et al., 2001; Halpern et al., 2007; Ogburn et al., 2007; Lewis, 2009):
 - Water quality impacts.
 - Oil spills.
 - Invasive species.
 - Timing and volume of freshwater inputs.
 - Habitat destruction or modification.

Mitigation of environmental hazards and risks

- Early live history (larval) stages → Very sensitive to chemicals.
- Large population centres or significant agricultural or industrial development occur.
- Larval spillover and other recruitment processes → MR are largely ineffective (Dee Boersma and Parrish, 1999)
- Clear disconnect \rightarrow hazards and risks and MR.
- Disconnect not communicated in MR planning documents but well known by recreational fishers and a key contention.
- False sense of security that the marine environment is protected while root causes of marine biodiversity and fisheries decline continue unchecked.

Mitigation of environmental hazards and risks

 MR should be incorporated in a risk based approach to management of marine systems where they mitigate key identified risks from fishing at a regional or local level. Where risks cannot be plausibly mitigated through the development and implementation of MR, other tools should be utilised.

- Technocratic approach with extensive public consultation.
- Heavy reliance on simple consultative mechanisms (public meetings and/or circulation of information).
- Dissatisfaction:
 - Outcomes of the process predetermined.
 - Recreational fishers not treated fairly compared to other stakeholders.
 - Insufficient feedback about how information provided by recreational fishers is used in the process.

Participatory approaches for MR design and monitoring

- Effective participation by stakeholders:
 - MR planners will take advantage of expert local knowledge of the marine environment.
 - Collection of information on fishing activities at a fine scale (mitigation of conflict).
 - Participatory approaches to the design of MR should be embraced by government.
- Conflict can be reduced.

Conclusion

- Rethinking the developing and implementation of MR for biodiversity protection.
 - Commitment to more participatory approaches.
 - Participatory partnerships (scientists, managers and the community) in the monitoring of MR.
- Acknowledgement that MR have potential costs as well as possible benefits to the RF and a commitment to robustly assess them.
- MR are not a panacea.

Conclusion

 Management of marine biodiversity should be through mitigation of hazards and risks, which includes but is far from limited to, the implementation of marine reserves.

THANKYOU!

