SAC GFCM
 Sub-Committee on Stock Assessment

Date*	1	November	2010	Code*	ANE1710Doc	
	Authors*		Document prepared by the AdriaMed (MIPAAF-FAO project) working group for small pelagics: Santojanni A. (1), Leonori I. (1), Carpi P. (1), De Felice A. (1), Cingolani (1) N., Belardinelli A. (1), Biagiotti I. (1), Campanella F. (1), Cikes Kec V. (3), Colella S. (1), Donato F. (1), Marceta B. (2), Modic T. (2), Panfili M. (1), Pengal P. (2), Ticina V. (3), Zorica B. (3)			

Affiliation* | 1) CNR-ISMAR, Ancona (Italy) |
| :--- |
| 2) Fisheries Research Institute of Slovenia, Ljubljana (Slovenia) |
| 3) Institute of Oceanography and Fisheries, Split (Croatia) |

Species Scientific name* 1 Engraulis encrasicolus - ANE
Source: GFCM Priority Species

2
Source: -

3
Source:

Geographical area*
Northern and central Adriatic Sea (southern limit: Gargano Promontory).

Geographical Sub-Area
(GSA)*
17 - Northern Adriatic
Combination of GSAs \qquad

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)

Assessment form

Date*	1	Nov	2010	Authors*	Document prepared by the AdriaMed (MIPAAF-FAO project) working group for small pelagics: Santojanni A. (1), Leonori I. (1), Carpi P. (1), De Felice A. (1),	
Species Scientific name*		Engraulis encrasicolus - ANE			Species common name*	Anchovy

Data Source

GSA *	17 - Northern Adriatic	Period of time*	$1975-2009$

Description of the analysis

Type of data*	Catch at age and echo-survey abundance index for tuning.	Data source*	Database (containing data from different sources) shared by the three research institutes of Ancona, Ljubljana, Split.
			Method of assessment
	Virtual Population Analysis (VPA) with Laurec-Shepherd tuning.	Software used*	Lowestoft MAFF-VPA by Darby and Flatman (1994).

Sheets filled out

B	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	C
1	---	---	---	---	1	1	3	---	1	1	1	---

Comments, bibliography, etc.

Darby C.D., Flatman S. 1994. Virtual Population Analysis: version 3.1 (Windows/Dos) user guide. Information Technology Series, MAFF Directorate of Fisheries Research, Lowestoft, 1: 85 pp .

Gislason H., N. Daan, J.C. Rice, J.G. Pope. 2008. Does natural mortality depend on individual size? ICES CM 2008/F:16.

Jacobson L.D., De Oliveira J.A.A., Barange M., Cisneros-Mata M.A., Félix-Uraga R., Hunter J.R., Kim J.Y., Matsuura Y., Ñiquen M., Porteiro C., Rothschild B., Sanchez R.P., Serra R., Uriarte A., Wada T. 2001. Surplus production, variability, and climate change in the great sardine and anchovy fisheries. Canadian Journal of Fisheries and Aquatic Science, 58(9): 1891-1903.

Patterson K. 1992. Fisheries for small pelagic species: an empirical approach to management targets. Review of Fish Biology and Fisheries, 2: 321-338.

Santojanni A, Cingolani N., Arneri A., Donato F., Colella S., Giannetti G., Belardinelli A., Panfili M. 2008. Biological sampling of commercial catches in the GSA 17, Italian Data Collection Regulation, year 2007 (in Italian). 70 pp.

Additional bibliography:
Cardinale M., Abella A., Bartolino V., Colloca F., Bellido J.M., Di Natale A., Bigot J.L., Fiorentino F., Garcia Rodriguez M., Giannoulaki M., Petrakis G., Gil de Sola L., Pilling G., Martin P., Quintanilla L.F., Murenu M., Osio G.C., Santojanni A., Sartor P., Spedicato M.T., Ticina V., Rätz H.J., Cheilari A. 2008. Report of the SGMED-08-04 Working group on the Mediterranean, Part IV. Editors:

Cardinale M., Rätz H.J., Cheilari A. EUR - Scientific and Technical Research Series. 728 pp.

Leonori I., Azzali M., De Felice A., Parmiggiani F., Marini M., Grilli F., Gramolini R. 2009. Small pelagic fish biomass in relation to environmental parameters in the Adriatic Sea. Proceedings of the Joint AIOL - SITE Meeting, Ancona, 17-20 September 2007. http://www.ecologia.it/congressi/XVII/articles/ 213-217.

Morello E.B., Arneri E. 2009. Anchovy and sardine in the Adriatic Sea - An Ecological Review. Oceanography and Marine Biology: An Annual Review, 47: 209-256.

Rampa R., Arneri E., Belardinelli A., Caputo E., Cingolani N., Colella S., Donato F., Giannetti G., Santojanni A. 2005. Length at first maturity of the Adriatic anchovy (Engraulis encrasicolus L.). Document presented at the General Fisheries Commission for the Mediterranean (GFCM), Scientific Advisory Committee (SAC), Sub Committee on Stock Assessment (SCSA), Rome, 26-30 September 2005.

Santojanni A. 2009. Comments on "Is anchovy (Engraulis encrasicolus, L.) overfished in the Adriatic Sea?" by Klanjscek and Legovic [Ecol. Model. 201 (2007): 312-316]. Ecological Modelling, 220: 430-433.

Santojanni A., Arneri E., Barry C., Belardinelli A., Cingolani N., Giannetti G., Kirkwood G. 2003. Trends of anchovy (Engraulis encrasicolus, L.) biomass in the northern and central Adriatic Sea. Scientia Marina, 67(3): 327-340.

Santojanni A., Arneri E., Bernardini V., Cingolani N., Di Marco M., Russo A. 2006. Effects of environmental variables on recruitment of anchovy in the Adriatic Sea. Climate Research, 31(2-3): 181-193.

Sinovcic G., Zorica B. 2006. Reproductive cycle and minimal length at sexual maturity of Engraulis encrasicolus (L.) in the Zrmanja River estuary (Adriatic Sea, Croatia). Estuarine, Coastal and Shelf Science, 69: 439-448.

Code: ANE1710Doc

Biology

Somatic magnitude measured (LH, LC, etc)*				Total length. Units* *		cm
Sex	Fem	Mal	Both	Unsexed		
Maximum size observed					Reproduction season	Spring-summer.
Size at first maturity			8		Reproduction areas	
Recruitment size			9		Nursery areas	

Parameters used (state units and information sources)

Comments

Natural mortality rates, \mathbf{M}, at age (in years) were estimated by the Gislason's method (Gislason et al., 2008), which is based on the empirical equation:
$\ln \mathrm{M}=\mathrm{a}+\mathrm{b} \ln \mathrm{L}+\mathrm{c} \ln \operatorname{Linf}+\mathrm{d} \ln \mathrm{k}$
where a, b, c, d were estimated by means of the statistical analysis performed by Gislason et al. (2008):
$\mathrm{a}=0.659, \mathrm{~b}-1.691, \mathrm{c}=1.444, \mathrm{~d}=0.898$.
The growth parameters reported above, $\operatorname{Linf}=16.147$ and $k=0.400$, obtained by Santojanni et al. (2008) for the Italian DCR, were used, although $\operatorname{Linf}=16,147$ is lower than expected for this stock. The following values of M at age were estimated:
Age M
$0 \quad 1.02$
$1 \quad 0.82$
20.67
$3 \quad 0.57$
$4+\quad 0.54$
where $4+$ is the plus-group, which includes individuals of the age classes 5 and 6 .
Tthese estimates of M at age were used in the present assessment.

In previous assessments $\mathrm{M}=0.6$ and $\mathrm{M}=0.8$ were used for all the age classes, according to literature and Hoenig's equation. The first value was preferred according to the precautionary approach.

1) Literature:

Anchovy: $\mathrm{M}=0.54$ and $\mathrm{M}=0.81$ were reported for the Catalan Sea by Pertierra and Lleonart (1996).
Pertierra J.P., Lleonart J. 1996. NW Mediterranean anchovy fisheries. Scientia Marina, 60 (Suppl. 2): 257-267.
2) Hoenig's equation:
$\operatorname{Ln} Z=1.44-0.982 \operatorname{Ln}$ tmax
"based largely on data from unexploited stocks", thus with Z being very close to M (Hoenig, 1983;
Hewitt and Hoenig, 2005).
Individuals older than 4 are found in the catches of this stock.
tmax (year) predicted Z
$1 \quad 4.22$
$2 \quad 2.14$
$3 \quad 1.43$
$4 \quad 1.08$
$5 \quad 0.87$
$6 \quad 0.73$
$7 \quad 0.62$
$8 \quad 0.55$
$9 \quad 0.49$
$10 \quad 0.44$
$11 \quad 0.40$
$12 \quad 0.37$

Hoenig J.M. 1983. Empirical use of longevity data to estimate mortality rates. Fishery Bulletin, 82: 898-903.

Hewitt D.A., Hoenig J.M. 2005. Comparison of two approaches for estimating natural mortality based on longevity. Fishery Bulletin, 103: 433-437.

Assessment form

Code: ANE1710Doc

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1						
Operational Unit 2						
Operational Unit 3						
Operational Unit 4						
Operational Unit 5						

Operational Units*	Fleet $\left(n^{\circ}\right.$ o boats)	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units

\square

Comments

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)

Assessment form

Time series

Model	Cohorts	Pseudocohorts
(mark with $X)$	x	

Equation used		Tunig method	Laurec-Shepherd tuning.
\# of gears		Software	Darby C.D., Flatman S. 1994.
$F_{\text {terminal }}$			

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum			Recruitment		
Average			Average population		
Maximum			Virgin population		
Critical			Turnover		

Average mortality

	Gear						
	Total						
F_{1}							
$\mathrm{~F}_{2}$							
Z							

(F1 and F2 represent different possible calculations. Please state them)

Comments

Catch at age data (see also the sheet A2):

- amounts: for both western and eastern sides of Adriatic are available since 1975;
- biological data needed to distribute numbers of caught individuals into age classes: for the western side of Adriatic are available since 1975 while for the eastern one since 2001.

Proportion of sexually mature individuals. This proportion was taken as equal to 0.50 for the age class 0 and 0.75 for 1 and 1.00 for $2-4+$.

Tuning data:

- Laurec-Shepherd VPA was tuned on abundance (number of fish) at age derived from echo-surveys carried out in both western and eastern sides of Adriatic. All the GSA 17 was thus covered by the surveys;
- western echo-survey abundances were distributed into age classes by means of length frequencies coming from the western echo-survey and age-length keys coming from the Italian commercial fleet; - eastern echo-survey abundances were distributed into age classes by means of length frequencies and age-length keys coming from the Croatian commercial fleet;
- the data series is from calendar year 2004 onwards, with surveys being carried out in September;

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)
Assessment form Sheet A2

Code: ANE1710Doc

| Sex * | M+F | Gear * | Mid-water trawlers and purse seiners. | Analysis \# * | VPA |
| :---: | :---: | :---: | :--- | :--- | :---: | | Data source | |
| :--- | :--- |

Data

Total catch at age (numbers in thousands) used as input data for VPA calculations.					
Split year	Age 0	Age 1	Age 2	Age 3	Age 4+
76	296691	686091	480224	221629	83577
77	362899	768650	587692	339326	190485
78	629137	1303524	843825	418961	201054
79	962994	1868703	1025407	376911	117188
80	594600	1524697	1153558	595074	270313
81	460310	1294987	1092606	600133	299005
82	581166	1045453	736400	392667	186551
83	538138	719903	413727	211638	91843
84	585801	626031	285235	137334	50293
85	903238	803134	277163	120871	28520
86	507957	638687	401614	266062	108615
87	123399	114640	77416	70299	42427
88	316468	117550	47454	26896	9133
89	525159	279251	109436	40112	7356
90	404575	268710	140347	70441	16149
91	386111	371134	174825	88455	36519
92	489542	310754	183858	150916	110267
93	147249	308002	151684	114463	106191
94	341049	478188	177472	108763	65023
95	422169	892358	316490	154855	78699
96	217939	834866	377253	197706	111294
97	500532	751743	305104	245281	158812
98	472876	747334	360525	271427	169079
99	422169	622278	302634	226727	98775
00	813325	906112	416398	115379	9098
01	754071	1050164	340092	65643	3235
02	440144	862964	387591	69170	6216
03	361837	1184318	460288	72766	4342
04	937742	1566232	414941	82271	7881
05	1270095	1534611	754955	90644	9803
06	840354	1442839	784111	181755	84980
07	348001	918557	1708298	303673	28836
08	402565	1060100	1324708	290665	40427
09	414062	1478567	1317734	268714	31303

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)
Assessment form

Page 1 / 3

Sex *	M+F	Gear *	Mid-water trawlers and purse seiners.	Analysis \#*	VPA

Population in figures

Abundance at age (numbers in thousands) from West and East echo-surveys used for the VPA tuning.

Population in biomass

Fishing mortality rates
Diagnostics to check if the assumption of constant catchability at age over the tuning time selected is respected.

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)

Assessment form

Page 2 / 3

Sex *	M+F	Gear *	Mid-water trawlers and purse seiners.	Analysis \#*	VPA

Population in figures

Left: fishing mortality rate as a function of age (average for different periods). Right: fishing mortality rate as a fuction c The standard procedure of Laurec-Shepherd VPA did not yield reliable estimates of biomass in some years; thus, the val

Population in biomass

Exploitation rate $\mathrm{F} /(\mathrm{F}+\mathrm{M})=\mathrm{F} / \mathrm{Z}$ as a function of time; the threshold 0.4 suggested by Patterson (1992) for the managem

Average F/Z 1-3
1976-09 0.36

2007-09 0.32

Fishing mortality rates
Recruitment (R, individuals with age 0) and spawning stock biomass (SSB).

Code: ANE1710Doc

Page 3 / 3

Sex *	M+F	Gear*	Mid-water trawlers and purse seiners.	Analysis \#*	VPA

Population in figures

Calculations of F on the odest age for each year x , i.e. Fx in the following proportion:
Fx : Ex = F 76-80 : E 76-80
where the average F for the time interval 1976-1980 was derived from a run of the standard procedure of Laurec-Shepherd VPA,
while E is the total fleet fishing effort in fishing days (not standardized); this series was obtained by means of a proportion between Porto Garibaldi fishing effort and catch of anchovy relative to the same harbour and the total fleet.
The fleet (mid-water trawlers) of Porto Garibaldi (Italy) accounts for high fractions of anchovy catch.
Since 2000 onwards, these total fleet raw fishing days were increased by 30%
to take into account probable improvements in the technology on boards of fishing vessels.
See the pictures below.

Population in biomass

Fishing mortality rates

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)

Assessment form

Other assessment methods
Page 1 / 1

Additional information on western echo-survey.
The trend of anchovy biomass density in the North Adriatic Sea (see figure below) in the period 1976-2009 derived from acoustic surveys is represented in the graph below. The average biomass density value was estimated in $25.7 \mathrm{t} / \mathrm{nm} 2$. After a peak in 1978 anchovy biomass began to decrease until the collapse of the years 1986-90; the recovery started in 1991 and proceeded until now with two peaks $(2001,2008)$ and one relative minimum value (2005). Biomass density in 2009 resulted $38.4 \mathrm{t} / \mathrm{nm} 2,50 \%$ higher respect to the average of the studied period.

The trend of anchovy biomass density in the Middle Adriatic Sea (see figure below) in the period 1987-2009 derived from acoustic surveys is represented in the graph below. The average biomass desnsity value was estimated in $35.2 \mathrm{t} / \mathrm{nm} 2$. Anchovy biomass presents very low levels in the years 1987-93; the change happens in 1994 with a significant increase in biomass. In more recent years the stock maintains good levels of biomass even if it presents fluctuations particularly evident in 2005-07 with a relative minimum value followed by a peak and then a minimum again. In 2009 anchovy biomass density level is a bit lower ($25.2 \mathrm{t} / \mathrm{nm} 2$) respect to the average value of the hystorical series.

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)

Assessment form

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
B					
SSB					
F					
Y					
CPUE					

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

| ? | - (or blank) Not known or uncertain. Not much information is available to make a judgment; |
| :--- | :--- | :--- |
| U | U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in
 total production; |
| M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited | |
| potential for expansion in total production; | |

	Exploitation rate		Stock abundance			
	E	No or low fishing	\underline{C}	Virgin or high abundance	E	Depleted
	[Moderate fishing	\square	Intermediate abundance	C	Uncertain / Not
	E	High fishing mortality	\square	Low abundance	L	assessed
	E	Uncertain / Not assessed				

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)

Assessment form

Code: ANE1710Doc

Management advice and recommendations*

The recent exploitation rate F / Z is under the Patterson's threshold 0.4 (Patterson, 1992). Thus, anchovy stock can be considered as moderately exploited.

However, strong changes and fluctuations over time are commonly observed in the abundance of small pelagics (Jacobson et al., 2001). In the past, the biomass of anchovy stock dropped at very low level in 1987 with consequent crisis of Italian fishery. After this collapse, recovery took place, but fluctuations still occured, in particular in recent years. Moreover, an increase was observed in the total catch of most recent years.

Adriatic small pelagic fishery is multispecies and effort on anchovy cannot be separated from effort on sardine, so that most of the management decisions have to be taken considering both species: the low increase in the recruitment observed for sardine doesn't justify at all an increase in the exploitation of these stocks.

In conclusion, the stock can be considered as moderately exploited, but it is recommended not to increase the fishing effort in the near future.

Advice for scientific research*

Present improvements.
In comparison with the previous assessment presented in the SCSA meeting held in Malaga in 2009, the following improvements in the methodology were introduced.

1) Echo-survey data used for VPA tuning, just like in the previous assessment, were relative to both western and eastern sides of Adriatic; however, in the present assessment, it was possible to split eastern echo-survey abundance into age classes using length frequencies and age-length keys (although coming from the commercial fleet) coming from the eastern side. Thus, it was possible to avoid the assumption that western echo-survey abundance index can be used for all the GSA 17.
2) Finally, the calculation of length frequencies for the western echo-surveys was improved since it was possible to include some distributions for the middle Adriatic (i.e. area between Giulianova and Vieste).

For the future.
The ongoing exercise with Integrated Catch Analysis (ICA) should be improved in order to set up another powerful tool for the small pelagic stock assessment in the Adriatic.

Further more the Adriatic coutries are developing a common protocol to apply in the next future the Daily Egg Production Method (DEPM) to improve the assessment techniques for small pelagics.

Abstract for SCSA reporting

Fisheries (brief description of the fishery)*

Fishery: mid-water trawlers and purse seiners.
Average total catch in the time interval 1976-2009 is 29000 tonnes.
Average total catch in the time interval 2007-2009 is 44000 tonnes.

Source of management advice*

(brief description of material -data- and methods used for the assessment)
VPA based on Laurec-Shepherd tuning was carried out, by means of the software developed by Darby and Flatman (1994).

The total catch at age from 1976 to 2009 (split year) used were relative to both western and eastern sides of Adriatic.

Tuning was performed using abundance at age data from echo-surveys carried out in both western and eastern sides of Adriatic, from 2004 to 2008 (due to the split year, information from surveys carried out in 2009 did not enter in the tuning data set).

Natural mortality at age was estimated by means of Gislason's method:
Age M
$0 \quad 1.02$
$1 \quad 0.82$
$2 \quad 0.67$
$3 \quad 0.57$
$4+\quad 0.54$
The threshold exploitation rate $F / Z=0.4$, suggested by Patterson (1992) for the management of small pelagics, was used as biological reference point.

Stock Status*

M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited potential for expansion in total production;

Exploitation rate
Moderate fishing mortality

Comments

Management advice and recommendations*

The recent exploitation rate F / Z is under the Patterson's threshold 0.4 (Patterson, 1992). Thus, anchovy stock can be considered as moderately exploited.

However, strong changes and fluctuations over time are commonly observed in the abundance of small pelagics (Jacobson et al., 2001). In the past, the biomass of anchovy stock dropped at very low level in 1987 with consequent crisis of Italian fishery. After this collapse, recovery took place, but fluctuations still occured, in particular in recent years. Moreover, an increase was observed in the total catch of most recent years.

Adriatic small pelagic fishery is multispecies and effort on anchovy cannot be separated from effort on sardine, so that most of the management decisions have to be taken considering both species: the low increase in the recruitment observed for sardine doesn't justify at all an increase in the exploitation of these stocks.

In conclusion, the stock can be considered as moderately exploited, but it is recommended not to increase the fishing effort in the near future.

Advice for scientific research*

Present improvements.
In comparison with the previous assessment presented in the SCSA meeting held in Malaga in 2009, the following improvements in the methodology were introduced.

1) Echo-survey data used for VPA tuning, just like in the previous assessment, were relative to both western and eastern sides of Adriatic; however, in the present assessment, it was possible to split eastern echosurvey abundance into age classes using length frequencies and age-length keys (although coming from the commercial fleet) coming from the eastern side. Thus, it was possible to avoid the assumption that western echo-survey abundance index can be used for all the GSA 17.
2) Finally, the calculation of length frequencies for the western echo-surveys was improved since it was possible to include some distributions for the middle Adriatic (i.e. area between Giulianova and Vieste).

For the future.
The ongoing exercise with Integrated Catch Analysis (ICA) should be improved in order to set up another powerful tool for the small pelagic stock assessment in the Adriatic.

Further more the Adriatic coutries are developing a common protocol to apply in the next future the Daily Egg Production Method (DEPM) to improve the assessment techniques for small pelagics.

