SAC GFCM Sub-Committee on Stock Assessment

Date* 1 October	2010 Code* SOL1710G.						
Authors*	G. Scarcella [*] , O. Giovanardi ^{**} , N. Vrgoc ^{***} , B. Marceta ^{****} , G. Fabi [*] , F. Grati [*] , S. Raicevich ^{**} , P. Polidori [*] , F. Domenichetti [*] , L. Bolognini [*] , I. Celic ^{**} , L. Sabatini ^{**}						
Affiliation*	* CNR-ISMAR Ancona; ** ISPRA Chioggia; *** IOF Split; **** FRIS Ljubljana.						
Species Scientific name*	 Solea vulgaris - SOL Source: GFCM Priority Species 						
	Source: -						
Geographical area*	Adriatic Sea						
Geographical Sub-Area (GSA)* Combination of GSAs 1 2 3	17 - Northern Adriatic						

Assessment form

Basic data on the assessment

Code: SOL1710G.

Sheet #0

Date*	1 Oct	2010	Authors*	G. Scarcella*, O. Giovanardi**, N. Vrgoc***, B. Marceta****, G.
-				Fabi*, F. Grati*, S. Raicevich**, P. Polidori*, F. Domenichetti*, L.
				Bolognini*, I. Celic**, L. Sabatini**

Species	Solea vulgaris - SOL	Species	Common sole
Scientific		common	
name*		name*	

Data Source

GSA*	17 - Northern Adriatic	Period of time*	2005-2009
------	------------------------	-----------------	-----------

Description of the analysis

Type of data*	Catch data from experimental surveys; size composition of the catches of	Data source*	ISMAR, ICRAM, IOF, FRIS, IREPA, FISHSTAT FAO, Fish markets, fisherman
	commercial fleets; commercial		associations, MiPAF, ISMAEA, SoleMon
Method of assessment*	XSA; SURBA; VIT and Yield per recruit	Software used*	Lowestoft package, FLR, SURBA, VIT

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	С
1	1	4	2		3	1	2	1	1	1	1	

Comments, bibliography, etc.

Branch T.A., Kirkwood G.P., Nicholson S.A., Lawlor B., Zara S.J. 2000. Yield version 1.0, MRAG Ltd, London, U.K.

Caddy J.F. 1991. Death rates and time intervals: is there an alternative to the constant natural mortality axiom?. Rev. Fish Biol. Fish. 1: 109–138.

Caddy J.F., Abella A.J. 1999. Reconstructing reciprocal M vectors from length cohort analysis (LCA) of commercial size frequencies of hake, and fine mesh trawl surveys over the same grounds. Fish. Res. 41: 169–175.

Cadima E.L. 2003. Fish Stock Assessment Manual. FAO Fish. Tec. Paper, 393.

Darby C.D., Flatman S. 1994. Virtual Population Analysis: Version 3.1 (Windows/DOS) User Guide. Information Technology Series, No. 1. Lowestoft: MAFF, Directorate of Fisheries Research; 85 pp. Gayanilo F.C.Jr., Sparre P., Pauly D. 2005. FAO-ICLARM Stock Assessment Tools II (FiSAT II). Needle C.L. 2005. SURBA 3.0: Technical Manual (first draft) FRS Marine Laborary; 10 pp. Gramolini R., Mannini P., Milone N., Zeuli V. 2005. AdriaMed Trawl Survey Information System (ATrIS): User manual. AdriaMed Technical Documents No 17, GCP/RER/010/ITA/TD-17. 141 pp. Kirkwood G.P., Aukland R., Zara S.J. 2001a. Length Frequency Distribution Analysis (LFDA), Version 5.0. MRAG Ltd, London, UK.

Hilborn R. and Walters C.J. 1992. Quantitative Fisheries Stock Assessemnt. Choice, Dynamics, and Uncertainity. Chapman and Hall Eds. New York, USA. 570.

Comments, bibliography, etc.

Pilling G. M., Kell L. T., Hutton T., Bromley P. J., Tidd A. N., Bolle L. J. 2008. Can economic and biological management objectives be achieved by the use of MSY-based reference points? A North Sea plaice (Pleuronectes platessa) and sole (Solea solea) case study. – ICES Journal of Marine Science, 65: 1069–1080.

Pauly, D., 1990. Length-converted catch curves and the seasonal growth of fishes. ICLARM Fishbyte, 8(3): 33-38.

Assessment form

Sheet B Biology of the species

Code: SOL1710G.

Riology -							
Somatic magnitude measured (LH, LC, etc)*				TL	Units*	cm	
	Sex	Fem	Mal	Both	Unsexed		
Maximum siz	ze observed	40	38.5			Reproduction season	
Size at first r	naturity	25.8				Reproduction areas	*
Recruitment	size			17-20		Nursery areas	**

Parameters used (state units and information sources)

				S	ex	
		Units	female	male	both	unsexed
	L∞	cm			39.6	
Oversite medial	К	1/year			0.44	
GIOWIII MOUEI	tO	year			-0.46	
	Data source	SoleMon I	Project (20	04-2009)		
Length weight	а				0.007	
relationship	b				3.0638	
	М				***	

sex ratio (mal/fem) 0.85

Comments

* Northern Adriatic: within meridians 13°00' and 14°20' E and parallels 44°10' and 45°20' N

** Marine coastal areas, estuarine and lagoon systems along the Italian coast of the central and northern Adriatic Sea

*** The vector of natural mortality by age was calculated from Caddy's (1991) method, using the PROBIOM Excel spreadsheet (Abella et al., 1997):

Age 0: 0.7; Age 1: 0.35; Age 2: 0.28; Age 3: 0.25; Age 4: 0.23; Age 5+: 0.22

Assessment form

General information about the fishery

Code: SOL1710G.

Sheet P1

Data source*	CNR ISMAR Ancona; ICH	RAM Chioggia; IOF Split; FRIS	Year (s)*	2005-2009
	Ljubljana			
Data aggregation figures between	on (by year, average א years, etc.)*	by year		

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ITA	17	E - Trawl (12-24 metres)	98 - Other Gear	33 - Demersal shelf species	SOL
Operational Unit 2	ITA	17	C - Minor gear with engine (6-12 metres)	07 - Gillnets and Entangling Nets	33 - Demersal shelf species	SOL
Operational Unit 3	HRV	17	C - Minor gear with engine (6-12 metres)	07 - Gillnets and Entangling Nets	33 - Demersal shelf species	SOL
Operational Unit 4	SVN	17	C - Minor gear with engine (6-12 metres)	07 - Gillnets and Entangling Nets	33 - Demersal shelf species	SOL
Operational Unit 5						

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ITA 17 E 98 33 - SOL	124	Tons	Solea solea	a officinalis, Squi		equivalvis, Anad	essel x Da
ITA 17 C 07 33 - SOL	469	Tons	Solea solea	elidonichthys luc		pecten irregulari:	essel x Da
HRV 17 C 07 33 - SOL		Tons	Solea solea				
SVN 17 C 07 33 - SOL		Tons	Solea solea				
Total	593						

Legal minimum size 20 cm

Comments

Operational Unit 1: from censuses carried out at the landing sites the Italian rapido trawl fleets operating in GSA 17 was made up by 155 vessels in 2005 and 124 vessels in 2006. Their Loa ranged from 9 to 30 m, the GRT ranged from 4 to 100 and the engine power from 60 to 1000 HP. each vessel can tow from 2 to 4 rapido trawls depending on its dimensions. The gear used by Operational Unit 1 is the rapido trawl, a specific gear used for the catch of flatfish and other benthic species (e.g. cuttlefish, mantis shrimp, etc.). It resembles a toothed beam-trawl and is made of an iron frame provided with 3-5 skids and a toothed bar on its lower side. These gears are usually towed at a greater speed (up to 10-13 km h-1) in comparison to the otter trawl nets; this is the reason of the name "rapido", the Italian word for "fast".

Comments

Scheme of rapido trawl used in GSA 17

Operational Unit 2: the fleet using set nets in GSA 17 was composed by 475 vessels in 2005 and by 469 vessels in 2006. Their Loa ranged from 5.0 to 12.0 m, their GRT from 1.0 to 10.0 and their engine power from 10 to 200 HP.

Operational Unit 3: landings of 200 t of S. solea per year have been suggested from croatian fishery. In 2009, 150 tons were considered a good estimation on the base of the Croatian fishery data presented in the report of the 12th session of the Scientific Advisory Committee (GFCM: XXXIV/2010/Inf.9). The length frequency distributions from 2005 to 2009 of the Croatian catches derived from the demography of common sole observed in the hauls performed close to the eastern waters during the SoleMon survey.

Operational Unit 4: landings of S. solea per year have been collected in the framework of the Data Collection Programme since 2005. The length frequency distributions from 2005 to 2008 of the Slovenian catches derived from the demography of common sole observed in the hauls performed close to the eastern waters during the SoleMon survey.

Assessment form

Sheet P2a Fishery by Operational Unit

Code: SOL1710G.

Page 1 / 4

Data source*	CNR ISMAR Ancona	OpUnit 1*	ITA 17 E 98 33 - SOL

Time series

Year*	2005	2006	2007	2008	2009	
Catch	1866	1721	1469	1984	1810	
Minimum size	13.50	12.50				
Average size Lc	22.20	21.40				
Maximum size	34.50	36.00				
Fleet	155	124	94	94	94	

Year			
Catch			
Minimum size			
Average size Lc			
Maximum size			
Fleet			

Selectivity		Remarks
L25	12.40	They correspond to 40.2 mm diamond mesh in the codend. The
L50	14.55	parameters have been derived from selectivity parameters given by
L75	16.72	Ferretti and Froglia (1975)
Selection factor	3.62	

Structure by size or age

Assessment form

Sheet P2a Fishery by Operational Unit

Code: SOL1710G.

Page 2/4

Data source*	CNR-ISMAR Ancona	OpUnit 2*	ITA 17 C 07 33 - SOL
-			

Time series

Year*	2005	2006	2007	2008	2009	
Catch	201.5	287	204	200	175	
Minimum size	14.5	15.5				
Average size Lc	22.4	22.4				
Maximum size	37	34				
Fleet	475	469	469	469	469	

Year			
Catch			
Minimum size			
Average size Lc			
Maximum size			
Fleet			

Selectivity	Remarks
L25	64 mm mesh : L50 left = 19.1; L100 = 21.7; L50 right = 24.4
L50	72 mm mesh : L50 left = 21.4 ; L100 = 24.3 ; L50 right = 27.3
L75	
Selection factor	

Structure by size or age

Demography of catches obtained by the Italian set net fleets targeting sole and operating in GSA 17 from San Benedetto del Tronto to Trieste (2005-2006)

Assessment form

Sheet P2a Fishery by Operational Unit

Code: SOL1710G.

Page 3 / 4

Data source*	Data source* IOF Split		HRV 17 C 07 33 - SOL
-			

Time series

a 1

Year*	2005	2006	2007	2008	2009	
Catch	200	200	200	200	150	
Minimum size						
Average size Lc						
Maximum size						
Fleet						

Year			
Catch			
Minimum size			
Average size Lc			
Maximum size			
Fleet			

Selectivity	Remarks
L25	
L50	
L75	
Selection factor	

Structure by size or age

Assessment form

Sheet P2a Fishery by Operational Unit

Code: SOL1710G.

Page 4 / 4

Data source*	FRIS Ljubljana	OpUnit 4*	SVN 17 C 07 33 - SOL
•			

Time series

Year*	2005	2006	2007	2008	2009	
Catch	12.9	11.1	17.4	14.2	21.1	
Minimum size						
Average size Lc						
Maximum size						
Fleet		51	54			

Year			
Catch			
Minimum size			
Average size Lc			
Maximum size			
Fleet			

Selectivity	Remarks
L25	
L50	
L75	
Selection factor	

Structure by size or age

Assessment form

Fishery by Operational Unit

Code: SOL1710G.

Page 1/2

Sheet P2b

Data source*	e* CNR - ISMAR Ancona		ITA 17 E 98 33 - SOL
-			

Regulations in force and degree of observance of regulations

Minimum mesh size (40 mm): observed. The mesh size used by rapido trawlers is usually around 48 mm, hence larger than the legal minimum mesh size.

Minimum landing size for sole (20 cm): not observed. The rapido trawl cathes include a relevant portion (>40% in number of individuals) of undersized specimens (see graphic in sheet P2a1).

Fishing ban inside the 3 miles offshore: partially observed. Rapido trawlers often fish illegaly in this area.

Accompanying species

Q		
Squilla		
Melice		
Aequi		
Pecten		
Trigla		
-		
		Ì

Assessment form

Fishery by Operational Unit

Code: SOL1710G.

Page 2/2

Sheet P2b

Data source*	Data source* CNR - ISMAR Ancona		ITA 17 C 07 33 - SOL	
-				

Regulations in force and degree of observance of regulations

Minimum mesh size (16 mm stretched): observed. The mesh size used by set netters targeting sole range from mm, hence larger than the legal minimum mesh size.

Minimum landing size for sole (20 cm): not always observed. The set net cathes include a portion (16% in number of individuals) of undersized specimens (see graphic in sheet P2a2).

Maximum length of nets x vessel x day (5,000 m): not always observed.

Accompanying species

Squilla Melice Trigla

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet A1 Assessment form Indirect methods: VPA, LCA Code: SOL1710G. Sex* Both Page 1 / 3 Analysis # * XSA **Time series** Data Size Age Model Cohorts Pseudocohorts (mark with X) (mark with X) Х Х Equation used Tunig method

Software

Lowestoft package

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum		0	Recruitment	48974	
Average			Average population		3936
Maximum		5+	Virgin population		
Critical			Turnover		

Average mortality

of gears

F_{terminal}

		Gear					
_	Total						
F ₁	1.35						
F ₂							
Z							

(F1 and F2 represent different possible calculations. Please state them)

Comments

F1 = Fbar 0-4

SAC GFCM - Sub-Committee on Stock Assessment (SCSA) Sheet A1 Assessment form Indirect methods: VPA, LCA Code: SOL1710G. Sex* Both Page 2/3 Analysis # * **SURBA Time series** Data Size Age Model Cohorts Pseudocohorts (mark with X) (mark with X) Х Х Equation used Tunig method # of gears Software SURBA

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum		0	Recruitment	31,270	
Average			Average population		4570
Maximum		5+	Virgin population		
Critical			Turnover		

Average mortality

F_{terminal}

		Gear				
_	Total					
F ₁	0.92					
F ₂						
Z						

(F1 and F2 represent different possible calculations. Please state them)

Comments

F1 = Fbar 0-4

As	se	SS	m	en	t	fo	rm

Sheet A1 Indirect methods: VPA, LCA

Analysis # *

Sex* Both

Code: SOL1710G.

Page 3/3

VIT

Time series

Data	Size	Age
(mark with X)		х

ModelCohortsPseudocohorts(mark with X)x

Equation used		Tunig method	
# of gears	Mean catch at age 2007-2009	Software	VIT
F _{terminal}	0.1		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum		0	Recruitment	47558887.52	
Average			Average population		#####
Maximum		5	Virgin population		
Critical			Turnover		

Average mortality

		Gear						
_	Total							
F ₁	0.61							
F ₂	0.71							
Z	0.95	• •						

(F1 and F2 represent different possible calculations. Please state them)

Comments

F1 = mean FF2= mean F (0-4)

	SAC C	GFCM - S	ub-Committee	on Stock Assessment (S	SCSA)
Accord	nt form				Sheet A2
Assessme					Indirect methods: data
					Code: SOL1710G.
Sex*	Both	Gear*	All	Analysis # *	XSA, SURBA and VIT
Data source	Catch at age	from comme	ercial landing (matrix	x Ca,y (N. ind.)) and CPUE from s	urvey data at start of the ye

Data

Catch (x 1000)Age 0Age 1Age 2Age 3Age 4Age 52190129143163150141026291515516741692311381311211182620242165779156811888197431649571520322622104624N/km*2Age 1Age 2Age 4Age 5162.01886.26639.27911.7663.4842.20790.719174.55849.3669.2122.1151.181191.886146.29574.90117.9931.3950.58128.066114.78557.62910.6235.4190.6177.183.347.56.51.980.390Maturity ogiv0.000.160.760.960.991.00M0.700.350.280.230.220.23Proportion of F before spawning0.70.8	XSA										
Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 2190 12914 3163 150 14 10 2629 15155 1674 169 23 11 3813 11211 1826 202 42 16 5779 15681 1888 197 43 16 4957 15203 2262 210 46 24 N/km^2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 M 0.70 0.35 0.28 0.25 0.23 0.22 M 0.70 0.35 0.28 0.25 0.23 <td>Ca</td> <td>tch (x 1000)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Ca	tch (x 1000)									
2190 12914 3163 150 14 10 2629 15155 1674 169 23 11 3813 11211 1826 202 42 16 5779 15681 188 197 43 16 4957 15203 2262 210 46 24 N/km*2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	Age 0	Age 1	Age 2	Age	e 3	Age 4		Age 5			
2629 15155 1674 169 23 11 3813 11211 1826 202 42 16 5779 15681 1888 197 43 16 4957 15203 2262 210 46 24 N/km*2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Maturity ogiv 0.024 0.104 0.207 0.304 0.380 0.522 Stock weight 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 <td>2190</td> <td>12914</td> <td>3163</td> <td>3</td> <td>150</td> <td></td> <td>14</td> <td>10</td> <td></td> <td></td> <td></td>	2190	12914	3163	3	150		14	10			
3813 11211 1826 202 42 16 5779 15681 1888 197 43 16 4957 15203 2262 210 46 24 N/km/2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 L Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	2629	15155	1674	ŀ	169		23	11			
5779 15681 1888 197 43 16 4957 15203 2262 210 46 24 Survey indices N/km^2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 0.00 0.16 0.76 0.96 0.99 1.00 0.70 0.35 0.28 0.22 0.23 0.22 Proportion of F before spawning 0.7 0.70 0.35 0.28 0.25 0.23 0.22	3813	11211	1826	6	202	4	42	16			
4957 15203 2262 210 46 24 Survey indices N/km*2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh Maturity ogiv 0.024 0.104 0.207 0.304 0.380 0.522 0.00 0.16 0.76 0.96 0.99 1.00 0.70 0.35 0.28 0.25 0.23 0.21 Proportion of F before spawning 0.7 0.8 0.8 0.8 0.8 0.8	5779	15681	1888	3	197	4	43	16			
Survey indices N/km '2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh Stock weigh Maturity ogiv 0 1 2 3 4 5 0.024 0.104 0.207 0.304 0.380 0.522 M 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	4957	15203	2262	2	210	4	46	24			
Survey indices N/km^2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh Stock weigh Maturity ogiv 0 1 2 3 4 5+ M 0.204 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22											
Survey indices N/km*2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh Stock weigh: 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv- 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv- 0.02 0.35 0.28 0.25 0.23 0.22											
Survey indices Nkm*2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Katch weigh Stock weigh Maturity ogiv 0.024 0.104 0.207 0.304 0.380 0.522 0.00 0.16 0.76 0.96 0.99 1.00 0.522 0.00 0.16 0.76 0.96 0.99 1.00 0.70 0.35 0.28 0.25 0.23 0.22											
Survey indices N/km^2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh Stock weigh: Maturity ogiv. 0.024 0.104 0.207 0.304 0.380 0.522 M 0.70 0.35 0.28 0.25 0.23 0.212											
N/km/2 Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 O 1 2 3 4 5+ Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.99 1.00 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 M 0.70 0.35 0.28 0.25 0.23 0.22	Su	invov indicos									
Age 0 Age 1 Age 2 Age 3 Age 4 Age 5 162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 0 1 2 3 4 5+ Catch weigh Stock weight Maturity ogiv 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	N/km^2	invey indices									
162.018 86.266 39.279 11.766 3.484 2.207 90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 0 1 2 3 4 5+ Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.99 1.00 0.70 0.35 0.28 0.22 Proportion of F before spawning 0.7 0.70 0.35 0.28 0.25 0.23 0.22		Ane 1	Ane 2	Aq	- 3	Ane 4		Age 5			
90.719 174.558 49.366 9.212 2.115 1.181 191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 0 1 2 3 4 5+ Catch weight 0.024 0.104 0.207 0.304 0.380 0.522 Stock weight 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	162 018	86 266	39 279) 1 [.]	1 766	3 48	34	2 207			
191.886 146.295 74.901 17.993 1.395 0.58 128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 0 1 2 3 4 5+ Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogivi 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	90 719	174 558	49 366	, i S (9 212	21	15	1 181			
128.066 114.785 57.629 10.623 5.419 0.6 177.1 83.3 47.5 6.5 1.98 0.39 O 1 2 3 4 5+ Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Stock weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	191.886	146.295	74.901	1	7.993	1.39	95	0.58			
177.1 83.3 47.5 6.5 1.98 0.39 Catch weigh Stock weigh Maturity ogiv M 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv M 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv M 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22	128.066	114.785	57.629) 1(0.623	5.4	19	0.6			
0 1 2 3 4 5+ Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Stock weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 Proportion of M before spawning 0.7 0.8	177.1	83.3	47.5	5	6.5	1.9	98	0.39			
0 1 2 3 4 5+ Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Stock weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 Proportion of M before spawning 0.8											
Catch weigh 0.024 0.104 0.207 0.304 0.380 0.522 Stock weigh 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 Proportion of M before spawning 0.7			0	1	2	3	4	5+			
Stock weigh: 0.024 0.104 0.207 0.304 0.380 0.522 Maturity ogiv: 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 Proportion of M before spawning 0.7	C	atch weigh	0.024	0.104	0.207	0.304	0.38	0 0.522			
Maturity ogiv 0.00 0.16 0.76 0.96 0.99 1.00 M 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 Proportion of M before spawning 0.7	S	tock weigh	0.024	0.104	0.207	0.304	0.38	0 0.522			
M 0.70 0.35 0.28 0.25 0.23 0.22 Proportion of F before spawning 0.7 Proportion of M before spawning 0.8	Ma	aturity ogiv	0.00	0.16	0.76	0.96	0.99	1.00			
Proportion of F before spawning 0.7 Proportion of M before spawning 0.8		М	0.70	0.35	0.28	0.25	0.23	0.22			
Proportion of F before spawning 0.7 Proportion of M before spawning 0.8											
Proportion of F before spawning 0.7 Proportion of M before spawning 0.8					_		. –				
Proportion of M before spawning 0.8					P	roportio	n of F	before sp	awning	0.7	
					Р	roportio	n of N	I before sp	bawning	0.8	

	SAC GFCM - Sub-Committee on Stock Assessment (SCSA)							
Acces	emont fo	r 100			Sheet A3			
A3363	Sillentio	1111		Indire	ct methods: VPA results			
					Code: SOL1710G.			
					Page 1 / 2			
Sex*	Both	Gear* All	Analy	sis #*	XSA			

Population in figures

Population in biomass

Fishing mortality rates

	SAC GFCM - Sub-Committee on Stock Assessment (SCSA)								
Acc.	comont fo	rm				Sheet A3			
A556	SSILLEIII IU				Indirec	t methods: VPA results			
						Code: SOL1710G.			
						Page 2 / 2			
Sex*	Both	Gear*	All		Analysis #*	SURBA			

Population in figures

Population in biomass

Fishing mortality rates

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)						
Accorement f			Sheet A3			
Assessment	ct methods: VPA results					
			Code: SOL1710G.			
			Page 3 / 2			
Sex*	Gear*	Analysis #*				

Population in figures

Population in biomass

Fishing mortality rates

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)									
Assassment f	orm				Sheet Y				
ASSESSMENT	UIII			Indirect	methods: Y/R				
				Cod	le: SOL1710G.				
Sex Both				Analysis #	Y/R				
# of gears	All	Software	Yield 1.0						

Parameters used

Vector F	
Vector M	
Vector N	
	Linf: 39.6 cm, k: 0.44, t0: -0.46; a: 0.007, b: 3.0638;
	Beverton-Holt model (CV: 0.31), Steepness: 0.75 and 0.9 (Pilling et al. 2008) Age maturity: J

Model characteristics

Results

	Total	Total Gear			
	TOTAL				
Current YR					
Maximum Y/R					
Y/R 0.1					
F _{max}					
F _{0.1}					
Current B/R					
Maximum B/R					
B/R 0.1					

Comments

	YR VIT YF	R YIELD YI	R XSA
F0.1	0.29	0.26	0.19
Fmax	0.42	0.46	0.35

Comments

Searching for biological reference points (BRP) through 1000 simulation produced the median values reported in tables considering two different values of steepness. Y/Rmax, Fmax and Y/Rref, Fref, the two latter corresponding to Y/R and F at SSB/initial SSB = 0.30, were assumed as limiting reference points. Whereas Y/R0.1 and F0.1, should be considered as target reference points.

RPs suggest an overfishing situation for the stock considering F current (1.33 from XSA) is much higher than the limit and target RPs F.

The effect of several bad recruitment years in a row has been evaluated only considering steepness of 0.9 using the transient analysis of SSB. A fishing mortality rate of 0.24 will result in a probability of 10% of the SSB falling below 20% of its unexploited level at least once in 20 years.

Assessment form

Sheet other

Code: SOL1710G.

Page 1 / 1

Other assessment methods

Figure 1. Spatial distribution of spawning females in fall (left) and fishing grounds of the Italian rapido trawl fleets (right; in yellow Chioggia rapido trawl fleet; in red Rimini rapido trawl fleet; in light blue Ancona rapido trawl fleet).

Assessment form

Sheet D Diagnosis

Code: SOL1710G.

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В	4038	Ton		=	
SSB	204	Ton		-	
F	1.33		0.26	+	(F0.1 target reference point: 0.26)
Y					
CPUE					

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

	\mathbf{O}	? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
	C	U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in
		total production;
		potential for expansion in total production;
nal		F - Fully exploited. The fishery is operating at or close to an optimal yield level, with no expected room for
sio		Turther expansion;
nidimen	0	O - Overexploited . The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
		D - Depleted . Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
		R - Recovering . Catches are again increasing after having been depleted or a collapse from a previous;

	Exploitation rate			Stock abundance				
nal		No or low fishing		Virgin or high abundance	\bigcirc	Depleted		
sio		Moderate fishing	Ο	Intermediate abundance	10	Uncertain / Not		
nen	0	High fishing mortality	\odot	Low abundance		assessed		
din		Uncertain / Not assessed						
B								

Comments

XSA results

State of exploitation: Exploitation decreased from 2005 to 2006, was constant in 2006-2007 and increased in 2008-2009. The most recent estimate of fishing mortality (F0-4) is 1.33, the highest values of relative F are for ages 1 and 2.

State of the juveniles (recruits): Recruitment varied without any trend in the years 2005-2009, reaching a minimum in 2006.

State of the total biomass and adult biomass: The total biomass regularly decreased from 2005 to 2007 and increased in 2008 reaching the maximum value, but decreased again in 2009. The SSB reached the minimum value in 2005, was constant in 2006 and 2007, increased in 2008 and decreased in 2009.

SURBA

The results of the SURBA model are in general accordance with the previous method providing the same perception of the state of the stock (F 2008: 0.92).

VIT

The VIT model was also applied considering the short data series. A smaller value of current F(0.61) was calculated.

The group underline that the series is really short for assessing with XSA and SURBA. A general agreement was made about using VIT results for the recommendations.

Moreover, the group underlines the need to include in the future assessments biological samples data from the eastern fishery as well as to extend the rapido trawl survey inside the 12 nm from the Croatian coast, as was performed in 2005 and 2006. Such requirements could be attained in the framework of ADRIAMED regional project.

Assessment form

Objectives and recommendations

Code: SOL1710G.

Sheet Z

Management advice and recommendations*

Considering the results, it can be concluded that the resource is over-exploited. A reduction of F of 50-80%, especially by rapido trawling, would be recommended, also taking into account that the exploitation is mainly orientated towards juveniles and the success of recruitment sems to be strictly related to environmental conditions (Domenichetti et al., 2009). Hence, in the case of both increasing fishing effort and yearly bad recruitment, there could be a high risk of stock depletion.

Advice for scientific research*

A two-months closure for rapido trawling inside 11 km off-shore along the Italian coast, after the biological fishing ban (August), would be advisable to reduce the portion of juvenile specimens in the catches.

For the same reason, specific studies on rapido trawl selectivity are necessary. In fact, it is not sure that the adoption of a larger mesh size would correspond to a decrease of juvenile catches, considering that the mesh opening currently used by the Italian rapido trawlers is larger (48 mm or more) than the legal one. The same uncertainty regards the adoption of a square mesh. SSB was practically constant over the 5 years, maybe because, as observed during the SoleMon

project, in late fall - winter the main spawning area is only partially exploited by Italian fleets (Figure 1). The safeguard of such area (identified by the rapido trawl survey) to prevent a possible future exploitation might be crucial for the sustainability of the Adriatic sole stock.

Moreover, considering the results presented at the GFCM meetings since 2005, it can be concluded that the rapido trawl survey is a very efficient tool for providing useful data for the stock

assessment, spatial distribution and biological informations of sole and other benthic species that in the following working group will be analyzed. From this point of view the prosecution of such survey is strongly advisable also with the support of the regional projects (e.g. ADRIAMED).

Abstract for SCSA reporting

Authors	G. Scarcella*,	O. Giovanardi**, N. Vrgoc***, B.	Year 2010					
	Marceta****, (G. Fabi*, F. Grati*, S. Raicevich**, P.						
	Polidori*, F. Domenichetti*, L. Bolognini*, I. Celic**,							
		, , , ,						
Species Sc	ientific name	Solea vulgaris - SOL						
		Source: GFCM Priority Species						
		Source: -						
		Source: -						
Geographi	cal Sub-Area	17 - Northern Adriatic						

Fisheries (brief description of the fishery)*

Sole (Solea solea) is one of most important target species of rapido trawl and set net fleets in GSA 17. The stock is shared between the Adriatic countries (Italy, Croatia and Slovenia). The Italian fleets exploit this resource with rapido trawl and set nets (gill nets and trammel nets), while only trammel net is used in the countries of the eastern coast. More than 90% of catches come from the Italian side. Landings fluctuated between 1,000 and 2,300 t in the period 1996-2006 (data source: FAO-FishStat, IREPA-SISTAN time series, ISMEA).

Source of management advice*

(brief description of material -data- and methods used for the assessment)

The assessment of sole stock was performed for the period 2005-2009 by means of XSA tuned with abundance indexes from SoleMon trawl surveys and SURBA model carried out with the same data set. Considering the short data series also a VIT model was run for the catch period 2007-2009.

Underestimation of small specimens in catches due to the gear selectivity was corrected using the selectivity parameters given by Ferretti and Froglia (1975). Several projects carried out in of GSA17 highlighted that the discard of sole both by rapido trawl and set net fisheries is negligible as the damaged specimens are also commercialized. At the moment data on sole are not available from the croatian side of Adriatic sea considering in the statistics sole is inside "mixed flatfish" category. A landing of 200 tons yearly of Solea solea has been suggested for croatian part, mainly from set-netters, from 2005 to 2008. Instead 150 tons have been reported in the report of the 12th session of the Scientific Advisory Committee (GFCM: XXXIV/2010/Inf.9).

Also landings from Slovenia are considered in the data.

Assuming a natural mortality vector (Ma) from Caddy's method (1991) (PROBIOM Excel spreadsheet; Caddy and Abella, 1999) and abundance-at-age (start year) from survey data. Yield-per-recruit (Y/R) analysis (Yield version 1.0, MRAG: Branch et al., 2000) was applied to estimate the reference points.

Stock Status*

O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;

Exploitation rate

High fishing mortality

Stock abundance

Intermediate abundance

Comments

XSA results

State of exploitation: Exploitation decreased from 2005 to 2006, was constant in 2006-2007 and increased in 2008-2009. The most recent estimate of fishing mortality (F0-4) is 1.33, the highest values of relative F are for ages 1 and 2.

State of the juveniles (recruits): Recruitment varied without any trend in the years 2005-2009, reaching a minimum in 2006.

State of the total biomass and adult biomass: The total biomass regularly decreased from 2005 to 2007 and increased in 2008 reaching the maximum value, but decreased again in 2009. The SSB reached the minimum value in 2005, was constant in 2006 and 2007, increased in 2008 and decreased in 2009.

SURBA

The results of the SURBA model are in general accordance with the previous method providing the same perception of the state of the stock (F 2008: 0.92).

VIT

The VIT model was also applied considering the short data series. A smaller value of current F (0.61) was calculated.

The group underline that the series is really short for assessing with XSA and SURBA. A general agreement was made about using VIT results for the recommendations.

Moreover, the group underlines the need to include in the future assessments biological samples data from the eastern fishery as well as to extend the rapido trawl survey inside the 12 nm from the Croatian coast, as was performed in 2005 and 2006. Such requirements could be attained in the framework of ADRIAMED regional project.

Management advice and recommendations*

Considering the results, it can be concluded that the resource is over-exploited. A reduction of F of 50-80%, especially by rapido trawling, would be recommended, also taking into account that the exploitation is mainly orientated towards juveniles and the success of recruitment sems to be strictly related to environmental conditions (Domenichetti et al., 2009). Hence, in the case of both increasing fishing effort and yearly bad recruitment, there could be a high risk of stock depletion.

Advice for scientific research*

A two-months closure for rapido trawling inside 11 km off-shore along the Italian coast, after the biological fishing ban (August), would be advisable to reduce the portion of juvenile specimens in the catches. For the same reason, specific studies on rapido trawl selectivity are necessary. In fact, it is not sure that the adoption of a larger mesh size would correspond to a decrease of juvenile catches, considering that the mesh opening currently used by the Italian rapido trawlers is larger (48 mm or more) than the legal one. The same uncertainty regards the adoption of a square mesh.

SSB was practically constant over the 5 years, maybe because, as observed during the SoleMon project, in late fall - winter the main spawning area is only partially exploited by Italian fleets (Figure 1). The safeguard of such area (identified by the rapido trawl survey) to prevent a possible future exploitation might be crucial for the sustainability of the Adriatic sole stock.

Moreover, considering the results presented at the GFCM meetings since 2005, it can be concluded that the rapido trawl survey is a very efficient tool for providing useful data for the stock assessment, spatial distribution and biological informations of sole and other benthic species that in the following working group will be analyzed. From this point of view the prosecution of such survey is strongly advisable also with the support of the regional projects (e.g. ADRIAMED).