SAC GFCM Sub-Committee on Stock Assessment

Date*	28	September	2010	Code*	MUT0610Fer			
		Authors*	Fernán	idez, A. M.				
		Affiliation*	I. E. O	. Centro Oceanográ	fico de Murcia			
Specie	Species Scientific name*			1 Source: GFCM Priority Species				
			2	Source: -				
			3	Source: -				
G	ieogra	phical area*	Western Mediterranean					
Geog Combina	raphic	al Sub-Area (GSA)* f GSAs 1 2 3	06 -	Northern Spain				

Assessment form

Basic data on the assessment

Code: MUT0610Fer

Sheet #0

Date*	28	Sep 2010	Authors*	Fernández, A. M.	
Species	S	Mullus barbatus	s - MUT	Species	Red mullet
Scientif	fic			common	
name*				name*	

Data Source

GSA*	06 - Northern Spain	Period of time*	1998-2009
------	---------------------	-----------------	-----------

Description of the analysis

Type of data*	Size composition of commercial catches, official landings and CPUE	Data source*	IEO, Fishermen Associations, Regional Autonomous Governments
Method of	Tuned VPA (XSA)	Software used*	Lowestoft (Darby and Flatman, 1994) VIT
assessment*	Y/R analysis (pseudocohort)		(Lleonart & Salat, 1997)

Sheets filled out

В	P1	P2a	P2b	G	A1	A2	A3	Y	Other	D	Z	С
1	1				2	1	1	1		1	1	

Comments, bibliography, etc.

Abella, A., Caddy, J.F., Serena, F. (1997). Do natural mortality and availability decline with age? An alternative yield paradigm for juvenile fisheries, illustrated by the hake Merluccius merluccius fishery in the Mediterranean. Aquat. Liv. Res., 10: 257–269.

Caddy, J.F. (1991). Death rates and time intervals: is there an alternative to the constant natural mortality axiom? Rev. Fish. Biol. Fish., 2: 109–138.

Carbonell, A. (1997) Discards of the western Mediterranean trawl fleets. Final Report Contract DGXIV-MED/94/027, 142 pp.

Darby, C.D. and Flatman, S., (1994). Virtual Population Análisis: version 3.1 (Windows/DOS) user guide. Info. Tech. Ser., MAFF Direct. Fish. Res., Lowestoft, nº 1, 85 pp.

Demestre M., M. Sbrana, F. Álvarez and P. Sánchez (1997) Analysis of the interactions of fishing gear in Mullus barbatus fisheries of the Western Mediterranean. J. Appl. Ichthyol., 13: 49-56.

Lleonart J. and J. Salat (1997) VIT: Software for fishery analysis. User's manual. FAO Computerized Information Series (Fisheries). Nº 11. Rome, FAO, 105 pp.

García-Rodriguez M. and Fernández A.M .2005. Influencia de la geometría de la malla del copo en las captura, selectividad y rendimientos de algunas especies de peces comerciales en el Golfo de Alicante (SE de la península Ibérica). Inf.Tec.Ins.Esp.Oceanogr. 185.

Sheet #0 (page 2)

Comments, bibliography, etc.

Lombarte A., L. Recasens, M. González and L. Gil de Sola (2000) Spatial segregation of two species of Mullidae (Mullus surmuletus and M. barbatus) in relation to habitat. Mar. Ecol. Prog. Ser., 206: 239-249.

Martín P., P. Sartor and M. García-Rodríguez (1999) Exploitation patterns of the European hake Merluccius merluccius, red mullet Mullus barbatus and striped red mullet Mullus surmuletus in the western Mediterranean. J. Appl. Ichthyol., 15: 24-28.

Assessment form

Sheet B Biology of the species

0.4 (6)

Code: MUT0610Fer

Riology .							
Somatic magnitude measured (LH, LC, etc)*					Total lengt	h Units*	cm
	Sex	Fem	Mal	Both	Unsexed		
Maximum s	size observed				28.5 (1)	Reproduction season	May-July
Size at first	t maturity				12.2 (2)	Reproduction areas	Continental shelf (4)
Recruitmer	nt size				7.8 (3)	Nursery areas	Coastal areas

Parameters used (state units and information sources)

				S	ex	
		Units	female	male	both	unsexed
	L∞				34.5 (5)	
Crowth model	К				0.34	
Growin moder	tO				-0.143	
	Data source		-	-		
Length weight	а				0.00624	
relationship	b				3.1597	
	М				0.4 (6)	

sex ratio (mal/fem)

Comments

(1) Size composition of trawl catches in GSA06.

(2) From the Spanish DCR National Programme

(3) García-Rodriguez, M. and Fernández, A.M. 2005.

(4) Lombarte, A.; L. Recasens; M. González and L. Gil de Sola (2000)

(5) Growth parameters adopted in the SGMED-08-03 meeting.

(6) Vector of M by size class calculated from Caddy (1991) equation using the PROBIOM Excel spreadsheet (Abella et al., 1997) and transformed to a M at age vector by VIT program: Āge Μ

nge	141
0	0.99
1	0.46
2	0.30
3	0.24
4	0.21
5	0.20
Mean	0.40

Sheet B (page 2)

Comments

Alterna Linf =	tive analysis v = 26.0; K = 0.4	was also done using the following parameters: 41; t0 = -0.4 (SGMED-08-03 slow growth)
1 ~~~	М	Erom DDODIOM (M. harbatus accessment CSA7 2000, IEDEMED, IEO)
Age	M 0.64	FIOII PROBIOM (M. Darbatus assessment GSA / 2009, IFREMER-IEO)
1	0.04	
$\frac{1}{2}$	0.43	
$\frac{2}{3}$	0.18	
4	0.15	
5	0.12	
6	0.12	
7	0.10	
Mean	0.25	

Assessment form

General information about the fishery

Code: MUT0610Fer

Sheet P1

Data source*	Size composition of trawl	catches from IEO and Spa	Year (s)*	1998-2009
Data aggregation figures between	on (by year, average 1 years, etc.)*	by year for XSA analysis a	and average 1998	3-2009 for Y/R analysis

Fleet and catches (please state units)

	Country	GSA	Fleet Segment	Fishing Gear Class	Group of Target Species	Species
Operational Unit 1*	ESP	06	E - Trawl (12-24 metres)	03 - Trawls	33 - Demersal shelf species	MUT
Operational Unit 2						
Operational Unit 3						
Operational Unit 4						
Operational Unit 5						

Operational Units*	Fleet (n° of boats)*	Kilos or Tons	Catch (species assessed)	Other species caught	Discards (species assessed)	Discards (other species caught)	Effort units
ESP 06 E 03 33 - MUT	723	Tons	1146	See sheet P2b	No		ays fishin
Total	723		1146				

Legal minimum size 11 cm total length

Comments

Fleet (nº of boats) refers to the average number of trawlers fishing in GSA-06 between 1998-2009.

Catch refers to the average trawl landings during the period 1998-2009.

Discards are not significant (Carbonell, 1997).

Assessment form

Fishery by Operational Unit

Code: MUT0610Fer

Page 1 / 1

Sheet P2a

|--|

Time series

Year*	1998	1999	2000	2001	2002	2003
Catch	1207	1185	1025	1115	1159	1004
Minimum size	5	5	6	5	5	6
Average size Lc	12.4	11.8	12.8	12.4	12.4	13.1
Maximum size	26	28	26	26	26	26
Fleet	810	797	774	760	757	738

Year	2004	2005	2006	2007	2008	2009
Catch	985	1055	1477	1384	1145	1011
Minimum size	6	6	5	5	5	5
Average size Lc	12.8	12.8	13.2	12.4	13	14.7
Maximum size	26	27	28	28	27	27
Fleet	729	722	716	691	624	567

Selectivity

Remarks

L25	6.9	Selectivity parameters for 40 mm diamond mesh in the cod-end
L50	7.8	(García-Rodriguez and Fernández, 2005).
L75	8.9	
Selection factor	1.95	

Structure by size or age

SAC	GFCM - Sub-Con	nmittee on S	Stock Asse	ssment (SCSA)	
Assessment form					Sheet A1
				Indirect method	s: VPA, LCA
Sex* both				Code:	MUT0610Fer Page 1 / 2
Time series				Analysis # *	1
Data Size	Age	Model	Cohorts	Pseudocohorts	
(mark with X)	X	(mark with X)	X		
				•	
Equation used	Catch equation		Tunig method	XSA	
# of gears	1		Software	Lowestoft VPA suite (I	Darby &
				Flatman, 1994)	

Population results (please state units)

1.3

	Sizes	Ages		Amount	Biomass
Minimum			Recruitment	132.1 (2)	
Average			Average population		3097 (2)
Maximum			Virgin population		
Critical			Turnover		SSB (2)
					730
				x 10** 6	in tons

Average mortality

F_{terminal}

_			Ge	ear	
	Total				
F ₁	0.768				
F ₂	0.1009				
Z	1.168				

(F1 and F2 represent different possible calculations. Please state them)

Comments

(1) F terminal from previous separable VPA
(2) average 1998-2009
F1 is the average Fbar 0-2 (1998-2009)
F2 is the mean F at age 0 (1998-2009)
Z=0.4+F1

	SAC	GFCN	I - Sub-Con	nmittee on	Stock Asse	ssment (SCSA)	
Assessment	form						Sheet A1
Assessment						Indirect method	ls: VPA, LCA
	_					Code:	MUT0610Fer
Sex* Both							Page 2 / 2
Time series						Analysis # *	2
						-	-
Data	Size	Age		Model	Cohorts	Pseudocohorts	
(mark with X)	Х			(mark with X)		Х	
Equation used		Catch e	equation		Tunig method		
# of gears		1			Software	VIT (Lleonart & Salat,	1997)
F _{terminal}		1.3					

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum			Recruitment	97.6	
Average	9.7	0.86	Average population		
Maximum			Virgin population		11500
Critical	13	1.25	Turnover		
				x 10**6	tons

Average mortality

			Ge	ear	
	Total				
F ₁	0.942				
F ₂					
Z	1.342				

(F1 and F2 represent different possible calculations. Please state them)

Comments

F1 is the arithmetic mean of F calculated along the different size classes Z=F1+0.4

SAC	GFCM - Sub-Cor	nmittee on 9	Stock Asse	ssment (SCSA)	
Accessment form					Sheet A1
ASSessment Ionn				Indirect method	s: VPA, LCA
				Code:	MUT0610Fer
Sex*					Page 3 / 2
Timo sorios				Analysis # *	
Data Size	Age	Model	Cohorts	Pseudocohorts	
(mark with X)		(mark with X)			
Equation used			Tunig method		
# of gears			Software		

Population results (please state units)

	Sizes	Ages		Amount	Biomass
Minimum			Recruitment		
Average			Average population		
Maximum			Virgin population		
Critical			Turnover		

Average mortality

F_{terminal}

		Gear					
	Total						
F ₁							
F ₂							
Z							

(F1 and F2 represent different possible calculations. Please state them)

Comments

SAC GFCM - Sub-Committee on Stock Assessment (SCSA)					
Assessment form		Sheet A2			
Assessment form	Indirect	t methods: data			
	Coc	de: MUT0610Fer			
Sex* Both Gear* Trawl	Analysis # *	1			
Data					

Data

	SAC GFCM - Sub-Committee on Stock Assessment (SCSA)						
Δεερε	ement fo	rm				Sheet A3	
A3303.	Sincin io				Indired	t methods: VPA results	
						Code: MUT0610Fer	
						Page 1 / 1	
Sex*	Both	Gear* Traw	ſ		Analysis #*	1	

Population in figures

Population in biomass

	SAC GI	CM - Sub-Comm	hittee on Stock A	Assessment (SCSA)
Assessment form					Sheet A3
A3303	Shent form			Indired	t methods: VPA results
					Code: MUT0610Fer
					Page 2 / 1
Sex*	Gear*			Analysis #*	1

Population in figures

Population in biomass

Fishing mortality rates

AGE	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
0	0.1554	0.2656	0.202	0.1463	0.2826	0.0876	0.2389	0.103	0.1235	0.1336	0.139	0.0301
1	1.6483	1.2955	1.394	1.1451	1.3913	0.8001	1.62	1.2502	1.5124	1.2522	1.1176	1.0902
2	0.9603	0.9402	0.9898	0.856	1.0003	0.6568	1.1177	0.7307	0.6974	0.7786	0.698	0.8084
+gp	0.9603	0.9402	0.9898	0.856	1.0003	0.6568	1.1177	0.7307	0.6974	0.7786	0.698	0.8084
3AR 0-2	0.9214	0.8338	0.8619	0.7158	0.8914	0.5148	0.9922	0.6946	0.7778	0.7214	0.6515	0.6429

Log catchability residuals

SA	C GFCM - Sub-Com	mittee on Stoo	ck Asse	essment (SCS	A)
Assessment for	'm				Sheet Y
Assessment for				Indired	ct methods: Y/R
			-	Coc	de: MUT0610Fer
Sex Both				Analysis #	2
# of gears	1	Software	VIT (Lleo	onart & Salat, 1997)

Parameters used

Vector F	From a previous separable VPA (see comments in sheet A1)
Vector M	Vector of M at age shown in sheet B
Vector N	Pseudocohort 1998-2009

Model characteristics

See Lleonart & Salat (1997) page 94.

Results

	Total	Gear				
	iotai					
Current YR	11.7					
Maximum Y/R	18.7					
Y/R 0.1	18.1					
F _{max}	0.25					
F _{0.1}	0.17					
Current B/R	7.8					
Maximum B/R	118.1					
B/R 0.1	46					

Comments

SSB	408.7	718.8 tons	Comparative results for the two sets of growth parameters
R	97.6	109.2 mill	
Turnove	205.17	142.14	
B virgen	11500	14683 tons	
F max	0.25	0.38	
F 0.1	0.17	0.23	
F global	0.67	0.46	

Sheet Y (page 2)

Assessment form

Sheet D Diagnosis

Code: MUT0610Fer

Indicators and reference points

Criterion	Current value	Units	Reference Point	Trend	Comments
В	2956	tons			Bmean as reference point (Blow=2150)
SSB	854	tons			SSBmean as reference point (SSBlow=475)
F	0.643				Mean Fbar 0-2 as a reference point (Flow=0.515)
Y	1011	tons			Ymean as reference point (Ylow= 985)
CPUE	22.36	kg/day			Total trawl fishery data. CPUElow= 17.08

Stock Status* Use one (or both) of the following two systems for the stock assessment status description

	С	? - (or blank) Not known or uncertain. Not much information is available to make a judgment;
	6	U - Underexploited, undeveloped or new fishery. Believed to have a significant potential for expansion in
	J	total production;
	(M - Moderately exploited, exploited with a low level of fishing effort. Believed to have some limited
lal	J	potential for expansion in total production;
sior	(F - Fully exploited. The fishery is operating at or close to an optimal yield level, with no expected room for
ens	J	further expansion;
<u>i</u>	•	O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the
nid	,	long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;
5	C	D - Depleted. Catches are well below historical levels, irrespective of the amount of fishing effort exerted;
	J	
	C	R - Recovering. Catches are again increasing after having been depleted or a collapse from a previous;

	Exploitation rate				Stock abundance					
nal		С	No or low fishing	С	Virgin or high abundance	Γ	С	Depleted		
Isio		C	Moderate fishing	С	Intermediate abundance	C	C	Uncertain / Not		
nen		٩	High fishing mortality	e	Low abundance		C	assessed		
din		С	Uncertain / Not assessed			_				
Bi	-									

Comments

Cath in number of individuals are based on younger ages (0 and 1). Average fishing mortality for ages 0-2 show a general decreasing trend over the studied period. Althought some fluctuations are observed, recruitment has remained more or less constant between 1998-2007. Nevertheless recruitment is under the mean for the period 1998-2007 in the last two years. SSB has recovered after the minimum observed in 2004; in the last four years is above the average for the whole period. Total biomass show wide fluctuations but any trend is observed.

Trends in recruitment, Fbar, stocks biomass and SSB are similar for both set of parameters used (fast and slow from SGMED-08-03).

Assessment form

Objectives and recommendations

Code: MUT0610Fer

Sheet Z

Management advice and recommendations*

- (1) To reduce the fishing effort 70%.
- (2) More effective control in shelf areas above 50 m depth should reduce the catch of small individuals under the minimum legal size.
- (3) According to transition analysis (MUT0608Fer) the compulsory use of the 40 mm square mesh in the cod-end from 2010 onwards should improve trawl exploitation pattern and Y/R by 24%, but a close supervision of the observance of this measure is needed.

Advice for scientific research*

 To improve biological and growth parameters Besides on board sampling, sampling at port is also needed 		
- Besides on board sampling, sampling at port is also needed	- To improve biological and growth parameters	
- Besides on board sampling, sampling at port is also needed		
	- Besides on board sampling, sampling at port is also needed	

Authors	Fernández, A.	М.	Year 2010
Species Sc	cientific name	Mullus barbatus - MUT Source: GFCM Priority Species	
		Source: - Source: -	
Geograph	ical Sub-Area	06 - Northern Spain	

Abstract for SCSA reporting

Fisheries (brief description of the fishery)*

Both species of red mullet, Mullus surmuletus and M. barbatus, are exploited by trawl and artisanal fisheries fleets in GSA 06, althought small gears (trammel nets and gillnets) account only for 5% of the total landings of these species (Demestre et al., 1997). Trawl fisheries developed along the continental shelf and upper slope are multi-specific. Small vessels operate almost exclusively on the continental shelf targeting on red mullets, octopus, cuttlefish and sea breams. Medium and large vessels usually operates on the slope areas targeting on hake and decapod crustaceans, but some of these units can also operate on the continental shelf depending on the season (e.g. red mullet is more intensively exploited from September to November; Martín et al., 1999), the weather conditions or market prices. Landings of M. barbatus increased continuously from the earliest 1970's until 1982. From this year until now a general decreasing trend with fluctuations is observed. An important fraction (28% of individuals) of M. barbatus are under the minimun legal size. The total number of boats (trawl fleet) in the GSA6 has been reduced 30% from 1998. Source of management advice*

(brief description of material -data- and methods used for the assessment)

The stock of Mullus barbatus of the GFCM-GSA06 has been assessed using data from the trawl fishery on a time series covering the period 1998-2009. The assessment has been carried out applying tuned VPA (Extended Survivor Analysis, XSA) and Y/R analysis on the pseudo-cohort 1998-2009. These approaches were performed using monthly size composition of catches, official landings and the growth parameters accorded in the SGMED-08-03 meeting. Length-weight relationships and oogive of maturity were obtained within the framework of the Spanish Data Collection Programme. The vector of natural mortality-at age was obtained from Caddy's (1991) formula using the PROBIOM Excel spreadsheet (Abella et al., 1997). The VPA was tuned with CPUE data from MEDITS surveys and standardised fleet CPUE (by aplying GLM models). Several XSA runs were carried out using different values for the terminal fishing mortality, retaining for the final analysis the value that minimised the SSQ. Software used were the Lowestoft VPA program for the XSA (Darby and Flatman, 1994) and the VIT program (Lleonart and Salat, 1997) for the Y/R analysis from a mean pseudo-cohort.

Stock Status*

O - Overexploited. The fishery is being exploited at above a level which is believed to be sustainable in the long term, with no potential room for further expansion and a higher risk of stock depletion/collapse;

Exploitation rate

Stock abundance

High fishing mortality

Low abundance

Comments

Cath in number of individuals are based on younger ages (0 and 1). Average fishing mortality for ages 0-2 show a general decreasing trend over the studied period. Althought some fluctuations are observed, recruitment has remained more or less constant between 1998-2007. Nevertheless recruitment is under the mean for the period 1998-2007 in the last two years. SSB has recovered after the minimum observed in 2004; in the last four years is above the average for the whole period. Total biomass show wide fluctuations but any trend is observed.

Trends in recruitment, Fbar, stocks biomass and SSB are similar for both set of parameters used (fast and slow from SGMED-08-03).

Advice for scientific research*

To improve biological and growth parameters
Besides on board sampling, sampling at port is also needed