Mucilage events in the Sea of Marmara and the associated processes: Field and laboratory findings

<u>Çolpan Polat-Beken</u>, Vildan Tüfekçi, Başak Sözer, Emel Yıldız, Fatma Telli-Karakoç, Mustafa Mantıkçı and Dilek Ediger

Marmara Research Center (MRC) -Environment Institute (EI) - Marine and Inland Waters SBU Chemistry Institute (CI)

Workshop on Algal and Jellyfish blooms in the Mediterranean and Black Sea, İstanbul, 6-8 October 2010

Mucilage events in the Sea of Marmara

4 major events recorded since 2007:

- October 2007
- January 2008
- Sept-Oct 2008
- December 2009-January 2010

1 massive event in 1992

Gonyaulax fragilis

Mucilage events in the Sea of Marmara

October 2008, İzmit (Inner Bay)

January 2008, Erdek Bay, underwater image

Different mucilage aggregates of phytoplankton origin

> Flocs Küçük yumaklar 1-25 mm

Ribbon Uzamış yumaklar 10-20 cm'den 1 m'ye Beyaz-sarı

Precali et al, 2005

Macroflocs Yuvarlak/düzensiz yumaklar, 1-5 cm Genellikle beyaz

Cobweb Ağ görüntülü yumaklar Stringer'lardan oluşmuş Düşeyde birkaç m., yatayda 10'larca m. Beyazımsı

Creamy surface layer Su yüzeyinde veya hemen altında yüzer Kalınlığı 15 cm'ye kadar Beyaz

Gelatinous surface layer Pateklenmiş süngersi yapı Su yüzeyinde Sarımsı-kahverengi

Clouds Çok büyük yumaklar 0.5m'den 3-4 m Genellikle sarı

False bottom Yoğun tabaka halinde 1-2 mm'den 10- ...cm kalınlığında Piknokline verlesmis

A research project (TUBITAK-108Y083), based on laboratory experiments and field studies, was initiated in 2008 to investigate the conditions that may activate these events.

<u>*Hypothesis:*</u> Phytoplankton extracellular organic material mainly composed of polysaccarides and carbohydrates played a critical role in forming the mucilage aggregates

Skeletonema costatum (Marchetti, 1990, M.Mingazzini, 1995, R. Urbani, 2005)

Cylindrotheca closterium (Mingazzini vd., 1995,
R. Alcoverro vd., 2000, Urbani vd., 2005)

Prorocentrum micans (Pompei vd., 2003)

Gonyaulax fragilis (Pompei vd., 2003, Pistocchi vd., 2005, Sampedro vd. 2007)

Investigation of factors controlling the marine mucilage/mucus formation with bioassay techniques

Methods:

• Temperature, light and nutrient controlled batch culture experiments with phytoplankton cultures; 3-7 weeks

- Chemical and microscopic analysis on dissolved material and aggregates (accumulation of dissolved organic material w/ time and chemical content of aggregates)
- Chemical and microscopic analysis on mucilage aggregates collected from marine environment (chemical and biological content of real material)
- Comparison of results

(Dissolved/particulate organic carbon, carbohydrates, protein, nutrients, FTIR, flouresans spectra, light/fluorescance microscopy, SEM)

- Visual identification
- Meterological variability in decades
- Inputs of land-based sources of nutrients

Experimental design

Experimental design

Nr	Species	Time interval	N/P Ratios	Features of the
				Experiment
1	P. micans CCAP	01.01.2009-26.01.2009	24 - 1,2 - 4 - 8,1 - 73	Sterile media
			– 146 - 485	
2	S. costatum CCAP	09.02.2009-02.03.2009	24 - 1,2 - 4 - 8,1 - 73	Sterile media
			– 146 - 485	
3	P. micans İ.K.	30.03.2009-29.04.2009	24 –1,2 - 4 – 8,1 - 73	Sterile media
			– 146 - 485	
4	S. costatum İ.K.	13.04.2009-13.05.2009	24 - 1,2 - 4 - 8,1 - 73	Sterile media
			– 146 - 485	
5	C. closterium CCAP	12.05.2009-08.06.2009	24 - 1,2 - 4 - 8,1 - 73	Sterile media
			– 146	
6	C. closterium İ.K.	11.08.2009-08.09.2009	24 - 1,2 - 4 - 8,1 - 73	Sterile media
			– 146	
7	<i>P. micans</i> İ.K.	26.08.2009-18.09.2009	24 - 1,2 - 4 - 15,6 -	NH ₄ addition
			73 – 485	
8	<i>P. micans</i> I.K.	19.10.2009-09.11.2009	24 – 4 - 73	Non-sterile media
9	C. closterium İ.K.	09.11.2009-12.01.2009	24 – 4 - 73	Non-sterile media
10	S. costatum İ.K.	09.11.2009-12.01.2009	24 – 4 - 73	Non-sterile media
11	P. micans İ.K.	08.12.2009-04.01.2010	24 + MgCl ₂ +CaCl ₂	Metal addition
			24 + CuCl ₂ +PbCl ₂	Non-sterile media
12	S. costatum İ.K.	03.02.2010-24.02.2010	24 – 4	Non-sterile media
				Low nutrient exposure
13	C. closterium İ.K.	03.02.2010-24.02.2010	24 – 4	Non-sterile media
				Low nutrient exposure
14	<i>G. fragilis</i> İ.K	10.03.2010-30.03.2010	24 – 4 - 73	Non-sterile media
15	C. closterium İ.K.	15.04.2010-09.06.2010	24 – 4 - 73	Non-sterile media / Longer
				time period
16	S. costatum İ.K.	31.08.2010-15.10.2010	24 – 4 - 73	Non-sterile media / Longer
1				time period

Experiments with *Prorocentrum micans* İ.K.

JÜBİTA

Experiments with *Prorocentrum micans* İ.K.

Experiments with *Prorocentrum micans* I.K. with external nutrient pulse : N-limited condition

Experiments with *S.costatum* **İ**.K. : CH accumulation in high and low nutrient exposures

Experiments with *C.closterium* İ.K. : CH accumulation in high and low nutrient exposures

High

Field studies

Field studies were basically organized in two ways;

- monitoring at a fixed station in front of the Marmara Research Center (outer İzmit Bay) every 1-3 weeks,
- monthly monitoring activities in the whole İzmit Bay (supported by Greater Municipality of Kocaeli)

and also patchily visiting other sites (Erdek Bay) during the events periods.

Field investigations were designed basically to monitor the phytoplankton distribution and standard oceanographic and meteorological features to understand better the occurring conditions of the mucilage events.

Field studies at MRC station (Phytoplankton abundance)

■ Total Dinoflagellates ■ Total Diatoms □ others

Field studies at MRC station (target species)

Phytoplankton Distribution in mucilage periods : Jan'08

Phytoplankton Distribution in mucilage periods : Oct'08

Phytoplankton Distribution in mucilage periods: Dec'09

Chemical composition of mucilage aggregates : FTIR

Laboratory aggregates : Obtained during single specie batch cultures

Major difference in N- and Plimited media:

C-O-C not exist in **N/P:8.1** instead C-O carbohydate exist at 1075 cm⁻¹

wavenumber (cm-r)						
	73	24	146			
	3411	3401	3423			
	2927	2925	2926			
	1645	1650	1648			
	1541	1548	1547			
ſÜBİTAK	1258	1259	1423			
ΜΔΙ	1138-1108	1107	1136			
	623	622	622			

Functional groups

-OH, Karbonhidrat CH ve CH2 alifatik C=O Amid I band C-N Amid II band C-N Amid III band C-O-C polisakkarit

Streching – aromatic ring

Chemical composition of mucilage aggregates : FTIR

Field mucilage aggregates : Sampled from surface in İzmit Bay

AM

М

Chemical composition of mucilage aggregates : FTIR

Laboratory aggregates : Obtained in natural media -mixed species- at laboratory incubation (6-11 days: 07-13-18.01.2010)

Investigation of factors controlling the marine mucilage/mucus formation with bioassay techniques

Gonyaulax fragilis and intercellular material– Epiflouresans microscope, 25 /12/2009 sampling

Gonyaulax fragilis – Light microscope 25 / 12 / 2009 sampling

Clear water sampled on 7 January 2010 and incubated at laboratory conditions for 6-11 days. Aggregates were formed in jars.

MAM

Inspiration from recent literature

Fig. 2. Aerial and coastal photographs of mucilage (from ACA)

Fig. 6. Mucilage formations by cultured G. fragilis.

Pistocchi et al.2005

Sampedro et al.2007

Fig. 3. Light and epifluorescence microscopy photographs of G. ftagilis. Note the sticky material leaving from their apical part.

Chemical composition of Aurelia aurita : FTIR

Wavelength(cm-1)

3700-3000

1400-1450

2923

1654

1547

1237

1075

Functional group

-OH ve –NH gruplarından kaynaklanan hidrojen bağı -CH₂ ve –CH₃ alkil gruplarına ait Stretching vibration bandı C=O Amid I bandı C-N Amid II bandı İnorganik karbonatlar C-N Amid III bandı C-O karbonhidrat

Summary of presented (1)

Field studies indicate that

•*Gonyaulax fragilis* is newly recorded starting from the first mucilage event in 2007.

•There are other inhabitants as mucilage producers

•Blooming of any of these species before and during the events is not the case

Light, temperature and nutrient controlled experiments indicate that

- DOC and dissolved carbohydrates considerably increase after 2 weeks
- Under P-limitation DOC accumulation is more pronounced whereas carbohydrate accumulation is at the same level in N and P limitation
- NH4 additions at sever N-limited condition increase DOC and CH accumulation

 At low nutrient exposures (same N/P) CH accumulation is 3-4 times more in diatoms

Summary of presented (2)

• FTIR results prove that chemical composition of field and laboratory aggregates are almost the same and the material is of phytoplankton origin with pronounced polysaccaride and carbohydrate bands

• This spectra is very similar to given in the literature which relate the mucilage phenomena to phytoplankton extracellular material aggregation

• FTIR of jelly fish (*A. aurita*) is different and shows a protein structure

THANK YOU

